Advertisement

Adaptive Utility-Based Recommendation

  • Alexander Felfernig
  • Monika Mandl
  • Stefan Schippel
  • Monika Schubert
  • Erich Teppan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6096)

Abstract

Knowledge-based recommenders support customers in preference construction processes related to complex products and services. In this context, utility constraints (scoring rules) play an important role. They determine the order in which items (products and services) are presented to customers. In many cases utility constraints are faulty, i.e., calculate rankings which are not expected and accepted by marketing and sales experts. The adaptation of these constraints is extremely time-consuming and often an error-prone process. In this paper we present an approach which effectively supports the automated adaptation of utility constraint sets based on solutions for corresponding nonlinear optimization problems. This approach significantly increases the applicability of knowledge-based recommendation by allowing the automated reproduction of item rankings specified by marketing and sales experts.

Keywords

Utility-based recommendation non-linear optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, R.: Knowledge-based Recommender Systems. Encyclopedia of Library and Information Systems 69(32), 180–200 (2000)Google Scholar
  2. 2.
    Biso, A., Rossi, F., Sperduti, A.: Experimental Results on Learning Soft Constraints. In: KR02, pp. 435–444 (2000)Google Scholar
  3. 3.
    Carenini, G., Moore, J.: Generating and evaluating evaluative arguments. AI Journal 170, 925–952 (2006)Google Scholar
  4. 4.
    Cohen, W., Schapire, R., Singer, Y.: Learning to order things. Journal of Artificial Intelligence Research 10, 243–270 (1999)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Felfernig, A., Friedrich, G., Schmidt-Thieme, L.: Recommender Systems. IEEE Intelligent Systems 22(3), 18–21 (2007)CrossRefGoogle Scholar
  6. 6.
    Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An Environment for the Development of Knowledge-based Recommender Applications. International Journal of Electronic Commerce (IJEC) 11(2), 11–34 (2006)CrossRefGoogle Scholar
  7. 7.
    Felfernig, A., Friedrich, G., Teppan, E., Isak, K.: Intelligent Debugging and Repair of Utility Constraint Sets in Knowledge-based Recommender Applications. In: 13th ACM Intl. IUI Conf., Canary Islands, Spain, January 13-16 (2008)Google Scholar
  8. 8.
    Felfernig, A., Isak, K., Szabo, K., Zachar, P.: The VITA Financial Services Sales Support Environment. In: AAAI/IAAI 2007, Canada, pp. 1692–1699 (2007)Google Scholar
  9. 9.
    Felfernig, A., Friedrich, G., Gula, B., Hitz, M., Kruggel, T., Melcher, R., Riepan, D., Strauss, S., Teppan, E., Vitouch, O.: Persuasive Recommendation: Exploring Serial Position Effects in Knowledge-based Recommender Systems. In: de Kort, Y.A.W., IJsselsteijn, W.A., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 283–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming. Cole Publishing Company (2002)Google Scholar
  11. 11.
    Gershberg, F., Shimamura, A.: Serial position effects in implicit and explicit tests of memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 20, 1370–1378 (1994)CrossRefGoogle Scholar
  12. 12.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, Chichester (1976)Google Scholar
  13. 13.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news Full text. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  14. 14.
    Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Monika Mandl
    • 1
  • Stefan Schippel
    • 2
  • Monika Schubert
    • 1
  • Erich Teppan
    • 2
  1. 1.Applied Software EngineeringGraz University of TechnologyGrazAustria
  2. 2.Intelligent Systems and Business InformaticsUniversity KlagenfurtKlagenfurtAustria

Personalised recommendations