Further Observations on Optimistic Fair Exchange Protocols in the Multi-user Setting

  • Xinyi Huang
  • Yi Mu
  • Willy Susilo
  • Wei Wu
  • Yang Xiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

Recent research has shown that the single-user security of optimistic fair exchange cannot guarantee the multi-user security. This paper investigates the conditions under which the security of optimistic fair exchange in the single-user setting is preserved in the multi-user setting. We first introduce and define a property called “Strong Resolution-Ambiguity”. Then we prove that in the certified-key model, an optimistic fair exchange protocol is secure in the multi-user setting if it is secure in the single-user setting and has the property of strong resolution-ambiguity. Finally we provide a new construction of optimistic fair exchange with strong resolution-ambiguity. The new protocol is setup-free, stand-alone and multi-user secure without random oracles.

References

  1. 1.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: Proceedings of the 4th ACM conference on Computer and Communications Security, pp. 7–17. ACM Press, New York (1997)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures (Extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC 2003. In: Proceedings of the 3rd ACM Workshop on Digital Rights Management, pp. 47–54. ACM, New York (2003)Google Scholar
  12. 12.
    Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Optimistic fair exchange secure in the multi-user setting and chosen-key model without random oracles. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Markowitch, O., Kremer, S.: An optimistic non-repudiation protocol with transparent trusted third party. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 363–378. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Park, J.M., Chong, E.K.P., Siegel, H.J.: Constructing fair-exchange protocols for E-commerce via distributed computation of RSA signatures. In: Proceedings of the twenty-second annual symposium on Principles of distributed computing, pp. 172–181. ACM, New York (2003)CrossRefGoogle Scholar
  18. 18.
    Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a construction without random oracles. In: Shacham, H. (ed.) Pairing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Zhang, J., Mao, J.: A novel verifiably encrypted signature scheme without random oracle. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 65–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington DC, pp. 55–61. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  22. 22.
    Zhu, H., Bao, F.: More on stand-alone and setup-free verifiably committed signatures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 148–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Zhu, H., Susilo, W., Mu, Y.: Multi-party stand-alone and setup-free verifiably committed signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 134–149. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xinyi Huang
    • 1
  • Yi Mu
    • 2
  • Willy Susilo
    • 2
  • Wei Wu
    • 2
  • Yang Xiang
    • 3
  1. 1.School of Information SystemsSingapore Management UniversitySingapore
  2. 2.Centre for Computer and Information Security Research, School of Computer Science and Software EngineeringUniversity of WollongongAustralia
  3. 3.School of Information TechnologyDeakin UniversityAustralia

Personalised recommendations