Advertisement

Text Search Protocols with Simulation Based Security

  • Rosario Gennaro
  • Carmit Hazay
  • Jeffrey S. Sorensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

This paper presents an efficient protocol for securely computing the fundamental problem of pattern matching. This problem is defined in the two-party setting, where party P 1 holds a pattern and party P 2 holds a text. The goal of P 1 is to learn where the pattern appears in the text, without revealing it to P 2 or learning anything else about P 2’s text. Our protocol is the first to address this problem with full security in the face of malicious adversaries. The construction is based on a novel protocol for secure oblivious automata evaluation which is of independent interest. In this problem party P 1 holds an automaton and party P 2 holds an input string, and they need to decide if the automaton accepts the input, without learning anything else.

Keywords

Encryption Scheme Pattern Match Security Parameter Oblivious Transfer Transition Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Canetti, R.: Security and composition of multi-party cryptographic protocols. Journal of Cryptology 13, 2000 (1998)Google Scholar
  2. 2.
    Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Yao, A.C.C.: How to generate and exchange secrets. In: SFCS 1986: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 162–167. IEEE Computer Society, Los Alamitos (1986)CrossRefGoogle Scholar
  6. 6.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the nineteenth annual ACM symposium on Theory of computing, pp. 218–229. ACM, New York (1987)CrossRefGoogle Scholar
  7. 7.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, New York (2004)zbMATHGoogle Scholar
  8. 8.
    Knuth Jr., D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  11. 11.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  12. 12.
    Jarecki, S., Xiaomin, L.: Efficient oblivious pseudorandom function with applications to adaptive ot and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient dna searching through oblivious automata. In: CCS 2007: Proceedings of the 14th ACM conference on Computer and communications security, pp. 519–528. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: ASIACRYPT 2009, Tokyo, Japan. LNCS, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  18. 18.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  19. 19.
    Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries (2010)Google Scholar
  20. 20.
    Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rosario Gennaro
    • 1
  • Carmit Hazay
    • 2
  • Jeffrey S. Sorensen
    • 1
  1. 1.IBM T.J. Watson Research CenterHawthorne, New YorkUSA
  2. 2.Dept. of Computer Science and Applied MathematicsWeizmann Institute and IDCIsrael

Personalised recommendations