Constant-Round Concurrent Non-Malleable Statistically Binding Commitments and Decommitments

  • Zhenfu Cao
  • Ivan Visconti
  • Zongyang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

When commitment schemes are used in complex environments, e.g., the Internet, the issue of malleability appears, i.e., a concurrent man-in-the-middle adversary might generate commitments to values related to ones committed to by honest players. In the plain model, the current best solution towards resolving this problem in a constant number of rounds is the work of Ostrovsky, Persiano and Visconti (TCC’ 09). They constructed a constant-round commitment scheme that is concurrent non-malleable with respect to both commitment and decommitment. However, the scheme is only computationally binding. For application scenarios where the security of receivers is of a great concern, computational binding may not suffice.

In this work, we follow the line of their work and give a construction of statistically binding commitment scheme which is concurrent non-malleable with respect to both commitment and decommitment. Our work can be seen as a complement of the work of Ostrovsky et al. in the plain model. Our construction relies on the existence of a family of pairs of claw-free permutations and only needs a constant number of communication rounds in the plain model. Our proof of security uses non-black-box techniques and satisfies the (most powerful) simulation-based definitions of non-malleability.

Keywords

commitment schemes statistically binding non-malleability 

References

  1. 1.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: STOC 1998: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 141–150. ACM, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 533–542. ACM, New York (2005)Google Scholar
  5. 5.
    Pass, R., Rosen, A.: New and improved constructions of nonmalleable cryptographic protocols. SIAM J. Comput. 38(2), 702–752 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–572. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  7. 7.
    Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput. 37(6), 1891–1925 (2008)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent non-malleable commitments and decommitments. In: Reingold, O. (ed.) Theory of Cryptography. LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. J. Cryptology 22(4), 530–571 (2009)MATHCrossRefGoogle Scholar
  10. 10.
    Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 1–10. ACM, New York (2007)Google Scholar
  12. 12.
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Cao, Z., Ding, N., Ma, R.: Non-malleable statistically hiding commitment from any one-way function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 303–318. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable witness indistinguishability and its applications. Electronic Colloquium on Computational Complexity (ECCC) 13(95) (2006)Google Scholar
  15. 15.
    Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable zero knowledge in the bare public-key model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable commitments and decommitments. Full version, unpublished manuscript (2009)Google Scholar
  17. 17.
    Feige, U.: Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel (1990)Google Scholar
  18. 18.
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Goldreich, O.: Foundations of Cryptography Volume II Basic Applications. Cambridge University Press, Cambridge (2004)Google Scholar
  20. 20.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)MATHCrossRefGoogle Scholar
  21. 21.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptology 9(3), 167–190 (1996)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  23. 23.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426. ACM, New York (1990)Google Scholar
  24. 24.
    Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: FOCS, pp. 345–354. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  26. 26.
    Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhenfu Cao
    • 1
  • Ivan Visconti
    • 2
  • Zongyang Zhang
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityP.R. China
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversity of SalernoItaly

Personalised recommendations