Passive Online RTT Estimation for Flow-Aware Routers Using One-Way Traffic

  • Damiano Carra
  • Konstantin Avrachenkov
  • Sara Alouf
  • Alberto Blanc
  • Philippe Nain
  • Georg Post
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6091)


With the introduction of new generation high speed routers, and with the help of “flow-aware” traffic management, it becomes possible to improve the Quality of Service for users as well as the network efficiency for ISPs. An example of the “flow-aware” traffic management is the Alcatel-Lucent “Semantic Networking” framework where short-lived flows are processed with high priority and long-lived flows are controlled on a per flow basis. In order to control efficiently the flows, it is useful to know an estimate of the Round Trip Time (RTT). In the present work, we provide an online RTT estimation algorithm which is passive and needs one-way traffic only. The one-way traffic requirement is essential for the application of the algorithm for “flow-aware” traffic management inside the network. To the best of our knowledge, there was no online one-way traffic RTT estimators. Tests on a controlled testbed and on the Internet demonstrate high accuracy of the proposed estimator.


Spectral Analysis Measurement Quality of service Evolution of IP network architecture 


  1. 1.
    Collange, D., Costeux, J.: Passive estimation of quality of experience. Journal of Universal Computer Science 14(5), 625–641 (2008)Google Scholar
  2. 2.
    Noirie, L., Dotaro, E., Carofiglio, G., Dupas, A., Pecci, P., Popa, D., Post, G.: Self-* features for semantic networking. In: Proc. of FITraMEn (December 2008)Google Scholar
  3. 3.
    Avrachenkov, K., Ayesta, U., Brown, P., Nyberg, E.: Differentiation between short and long TCP flows: predictability of the response time. In: Proc. of IEEE INFOCOM, Hong Kong (March 2004)Google Scholar
  4. 4.
    Rai, I., Biersack, E., Urvoy-Keller, G.: Size-based scheduling to improve the performance of short TCP flows. IEEE Network 19(1), 12–17 (2005)CrossRefGoogle Scholar
  5. 5.
    Kortebi, A., Muscariello, L., Oueslati, S., Roberts, J.: Evaluating the number of active flows in a scheduler realizing fair statistical bandwidth sharing. In: Proc. of ACM SIGMETRICS, Banff, Alberta, Canada (June 2005)Google Scholar
  6. 6.
    Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring TCP connection characteristics through passive measurements. In: Proc. of IEEE INFOCOM, Hong Kong (March 2004)Google Scholar
  7. 7.
    But, J., Keller, U., Kennedy, D., Armitage, G.: Passive TCP stream estimation of RTT and jitter parameters. In: Proc. of IEEE CLCN (November 2005)Google Scholar
  8. 8.
    Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins of Internet flow rates. In: Proc. of ACM SIGCOMM (August 2002)Google Scholar
  9. 9.
    Lance, R., Frommer, I., Hunt, B., Ott, E., Yorke, J., Harder, E.: Round-trip time inference via passive monitoring. ACM SIGMETRICS PER 33, 32–38 (2005)CrossRefGoogle Scholar
  10. 10.
    Veal, B., Li, K., Lowenthal, D.: New methods for passive estimation of TCP round-trip times. In: Proc. of PAM, Boston, MA, USA (April 2005)Google Scholar
  11. 11.
    Jiang, H., Dovrolis, C.: Passive estimation of TCP round-trip times. Computer Communication Review 32(3), 75–88 (2002)CrossRefGoogle Scholar
  12. 12.
    Qi, Y., Minka, T., Picard, R.: Bayesian spectrum estimation of unevenly sampled nonstationary data. In: Proc. of ICASSP, Orlando, FL, USA (May 2002)Google Scholar
  13. 13.
    Brown, P.: Resource sharing of TCP connections with different round trip times. In: Proc. of IEEE INFOCOM, Tel Aviv, Israel (March 2000)Google Scholar
  14. 14.
    Altman, E., Jimenez, T., Nunez Queija, R.: Analysis of two competing TCP/IP connections. Performance Evaluation 49(1-4), 43–55 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Stoica, P., Moses, R.: Introduction to spectral analysis. Prentice-Hall, Englewood Cliffs (1997)zbMATHGoogle Scholar
  16. 16.
    Stoica, P., Sandgren, N.: Spectral analysis of irregularly-sampled data: Paralleling the regularly-sampled data approaches. Digital Signal Processing 16(6), 712–734 (2006)CrossRefGoogle Scholar
  17. 17.
    Scargle, J.: Statistical aspects of spectral analysis of unevenly spaced data. Journal of Astrophysics 263, 835–853 (1982)CrossRefGoogle Scholar
  18. 18.
    Carra, D., Avrachenkov, K., Alouf, S., Blanc, A., Nain, P., Post, G.: Passive online RTT estimation for flow-aware routers using one-way traffic. Research Report RR-7124, INRIA (November 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Damiano Carra
    • 1
  • Konstantin Avrachenkov
    • 2
  • Sara Alouf
    • 2
  • Alberto Blanc
    • 2
  • Philippe Nain
    • 2
  • Georg Post
    • 3
  1. 1.University of VeronaVeronaItaly
  2. 2.INRIA, Sophia AntipolisFrance
  3. 3.Alcatel-Lucent Bell LabsNozayFrance

Personalised recommendations