Advertisement

A Flow Scheduler Architecture

  • Dinil Mon Divakaran
  • Giovanna Carofiglio
  • Eitan Altman
  • Pascale Vicat-Blanc Primet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6091)

Abstract

Scheduling flows in the Internet has sprouted much interest in the research community leading to the development of many queueing models, capitalizing on the heavy-tail property of flow size distribution. Theoretical studies have shown that ‘size-based’ schedulers improve the delay of small flows without almost no performance degradation to large flows. On the practical side, the issues in taking such schedulers to implementation have hardly been studied. This work looks into practical aspects of making size-based scheduling feasible in future Internet. In this context, we propose a flow scheduler architecture comprising three modules — Size-based scheduling, Threshold-based sampling and Knockout buffer policy — for improving the performance of flows in the Internet. Unlike earlier works, we analyze the performance using five different performance metrics, and through extensive simulations show the goodness of this architecture.

Keywords

Scheduling Sampling QoS Future Internet Architecture 

References

  1. 1.
    Bonald, T., Oueslati-Boulahia, S., Roberts, J.: IP traffic and QoS control: the need for a flow-aware architecture. In: World Telecommunications Congress (September 2002)Google Scholar
  2. 2.
    Schrage, L.: A proof of the optimality of the Shortest Remaining Processing Time Discipline. Operations Research (16), 687–690 (1968)Google Scholar
  3. 3.
    Rai, I.A., Urvoy-Keller, G., Vernon, M.K., Biersack, E.W.: Performance analysis of las-based scheduling disciplines in a packet switched network. SIGMETRICS Perform. Eval. Rev. 32(1), 106–117 (2004)CrossRefGoogle Scholar
  4. 4.
    Kleinrock, L.: Queueing Systems. Computer Applications, vol. II. Wiley Interscience, Hoboken (1976)zbMATHGoogle Scholar
  5. 5.
    Guo, L., Matta, L.I.: The war between mice and elephants. In: ICNP 2001, pp. 180–188 (November 2001)Google Scholar
  6. 6.
    Rai, I.A., Biersack, E.W., Urvoy-Keller, G.: Size-based scheduling to improve the performance of short TCP flows. IEEE Network 19(1), 12–17 (2005)CrossRefGoogle Scholar
  7. 7.
    Avrachenkov, K., Ayesta, U., Brown, P., Nyberg, E.: Differentiation Between Short and Long TCP Flows: Predictability of the Response Time. In: INFOCOM (2004)Google Scholar
  8. 8.
    Aalto, S., Ayesta, U., Nyberg-Oksanen, E.: Two-level processor-sharing scheduling disciplines: mean delay analysis. SIGMETRICS Perform. Eval. Rev. 32(1), 97–105 (2004)CrossRefGoogle Scholar
  9. 9.
    Aalto, S., Ayesta, U.: Mean delay analysis of multi level processor sharing disciplines. In: INFOCOM (2006)Google Scholar
  10. 10.
    Zseby, T., et al.: RFC 5475: Techniques for IP Packet Selection (March 2009), http://www.rfc-editor.org/rfc/rfc5475.txt (Network Working Group)
  11. 11.
    Psounis, K., Ghosh, A., Prabhakar, B., Wang, G.: SIFT: A simple algorithm for tracking elephant flows, and taking advantage of power laws. In: 43rd Annual Allerton Conference on Control, Communication and Computing (2005)Google Scholar
  12. 12.
    Estan, C., Varghese, G.: New directions in traffic measurement and accounting. SIGCOMM Comput. Commun. Rev. 32(4), 323–336 (2002)CrossRefGoogle Scholar
  13. 13.
    Chang, C.G., Tan, H.H.: Queueing analysis of explicit policy assignment push-out buffer sharing schemes for atm networks. In: Proceedings of the 13th IEEE Networking for Global Communications, vol. 2, pp. 500–509 (June 1994)Google Scholar
  14. 14.
    Divakaran, D.M., Carofiglio, G., Altman, E., Primet, P.V.B.: A flow scheduler architecture. Research Report 7133, INRIA (December 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dinil Mon Divakaran
    • 1
  • Giovanna Carofiglio
    • 2
  • Eitan Altman
    • 3
  • Pascale Vicat-Blanc Primet
    • 1
  1. 1.INRIA / Université de Lyon / ENS Lyon, LIP, ENS LyonLyonFrance
  2. 2.Alcatel-Lucent Bell Labs 
  3. 3.INRIA 

Personalised recommendations