Using Torrent Inflation to Efficiently Serve the Long Tail in Peer-Assisted Content Delivery Systems

  • Niklas Carlsson
  • Derek L. Eager
  • Anirban Mahanti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6091)

Abstract

A peer-assisted content delivery system uses the upload bandwidth of its clients to assist in delivery of popular content. In peer-assisted systems using a BitTorrent-like protocol, a content delivery server seeds the offered files, and active torrents form when multiple clients make closely-spaced requests for the same content. Scalability is achieved in the sense of being able to accommodate arbitrarily high request rates for individual files. Scalability with respect to the number of files, however, may be much more difficult to achieve, owing to a “long tail” of lukewarm or cold files for which the server may need to assume most or all of the delivery cost. This paper first addresses the question of how best to allocate server resources among multiple active torrents. We then propose new content delivery policies that use some of the available upload bandwidth from currently downloading clients to “inflate” torrents for files that would otherwise require substantial server bandwidth. Our performance results show that use of torrent inflation can substantially reduce download times, by more than 50% in some cases.

Keywords

Peer-assisted multi-torrent torrent inflation long tail 

References

  1. 1.
    Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: Evidence and implications. In: Proc. IEEE INFOCOM, New York (March 1999)Google Scholar
  2. 2.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.: I tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video system. In: Proc. ACM IMC, San Deigo, CA (October 2007)Google Scholar
  3. 3.
    Dan, G., Carlsson, N.: Dynamic swarm management for improved BitTorrent performance. In: Proc. IPTPS, Boston, MA (April 2009)Google Scholar
  4. 4.
    Yang, X., de Veciana, G.: Service capacity of peer-to-peer networks. In: Proc. IEEE INFOCOM, Hong Kong, China (March 2004)Google Scholar
  5. 5.
    Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest first and choke algorithms are enough. In: Proc. ACM IMC, Rio de Janeiro, Brazil (October 2006)Google Scholar
  6. 6.
    Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurement, analysis, and modeling of BitTorrent-like systems. In: Proc. ACM IMC, Berkley, CA (2005)Google Scholar
  7. 7.
    Yang, Y., Chow, A.L.H., Golubchik, L.: Multi-torrent: A performance study. In: Proc. MASCOTS, Baltimore, MD (September 2008)Google Scholar
  8. 8.
    Menasche, D.S., Rocha, A.A.A., Li, B., Towsley, D., Venkataramani, A.: Content availability and bundling in swarming systems. In: ACM CoNEXT, Rome, Italy (December 2009)Google Scholar
  9. 9.
    Wu, D., Liu, Y., Ross, K.W.: Queuing network models for multi-channel p2p live streaming systems. In: Proc. IEEE INFOCOM, Rio de Janeiro, Brazil (April 2009)Google Scholar
  10. 10.
    Wu, D., Liang, C., Liu, Y., Ross, K.W.: View-upload decoupling: A redesign of multi-channel p2p video systems. In: Proc. IEEE INFOCOM Mini-conference, Rio de Janeiro, Brazil (April 2009)Google Scholar
  11. 11.
    Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for peer to peer file sharing workloads. In: Proc. NSDI, San Francisco, CA (2008)Google Scholar
  12. 12.
    Ramachandran, A., das Sarma, A., Feamster, N.: Bitstore: An incentive compatible solution for blocked downloads in BitTorrent. In: Proc. NetEcon, San Diego, CA (2007)Google Scholar
  13. 13.
    Carlsson, N., Eager, D.L.: Modeling priority-based incentive policies for peer-assisted content delivery systems. In: Proc. IFIP Networking, Singapore (2008)Google Scholar
  14. 14.
    Das, S., Tewari, S., Kleinrock, L.: The case for servers in a peer-to-peer world. In: Proc. IEEE ICC, Istanbul, Turkey (June 2006)Google Scholar
  15. 15.
    Wu, C., Li, B., Zhao, S.: Multi-channel live p2p streaming: Refocusing on servers. In: Proc. IEEE INFOCOM, Phoenix, AZ (April 2008)Google Scholar
  16. 16.
    Sun, Y., Liu, F., Li, B., Li, B.: Peer-assisted online storage and distribution: Modeling and server strategies. In: Proc. NOSSDAV, Williamsburg, VA (2009)Google Scholar
  17. 17.
    Sun, Y., Liu, F., Li, B., Li, B., Zhang, X.: Fs2you: Peer-assisted semi-persistent online storage at a large scale. In: Proc. IEEE INFOCOM, Rio de Janeiro, Brazil (April 2009)Google Scholar
  18. 18.
    Aggarwal, C.C., Wolf, J.L., Yu, P.S.: On optimal batching policies for video-on-demand storage servers. In: Proc. IEEE ICMCS, Hiroshima, Japan (June 1996)Google Scholar
  19. 19.
    Aksoy, D., Franklin, M.: RxW: A scheduling approach for large-scale on-demand data broadcast. IEEE/ACM Trans. on Networking 6(7), 846–860 (1999)CrossRefGoogle Scholar
  20. 20.
    Carlsson, N., Eager, D.L.: Peer-assisted on-demand streaming of stored media using BitTorrent-like protocols. In: Proc. IFIP Networking, Atlanta, GA (2007)Google Scholar
  21. 21.
    Saroiu, S., Gummadi, K.P., Gribble, S.D.: A measurement study of peer-to-peer file sharing systems. In: Proc. MMCN, San Jose, CA (January 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Niklas Carlsson
    • 1
  • Derek L. Eager
    • 2
  • Anirban Mahanti
    • 3
  1. 1.University of CalgaryCalgaryCanada
  2. 2.University of SaskatchewanSaskatoonCanada
  3. 3.NICTAAlexandriaAustralia

Personalised recommendations