Imaging in Oncology Research

  • Wolfgang A. Weber
  • Fabian Kiessling


Imaging has been extensively used to monitor the development and progression of cancer in laboratory animals. Imaging also plays an increasing role in monitoring tumor response to therapeutic interventions. Using modern imaging technologies tumor volumes can be measured in subcutaneous and orthotopic models longitudinally. Furthermore, animals can be screened for the development and progression of metastases. Using imaging techniques it is also feasible to study non-invasively the microenviroment of tumor tissue, such as regional perfusion, vascular permeability, or oxygen tension. Depending on the specific scientific question, the tumor model and the location of disease, tumors are best studied by ultrasound, optical imaging, CT, MRI, SPECT, PET or a combination of these techniques. In this chapter we focus on techniques that have been used to study tumor localization and tumor mass, gene and protein expression, tumor microenvironment, tumor cell proliferation and metabolism and to monitor therapeutic interventions. The aim is to provide the reader an overview of the features of malignant tumors that can be studied on a routine basis in small animal imaging laboratories. Furthermore, practical guidelines for imaging protocols are provided and known “pitfalls” are discussed.


Tumor Uptake Bioluminescence Imaging Chemical Exchange Saturation Transfer Prostate Stem Cell Antigen Small Animal Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andresen V, Alexander S, Heupel WM, Hirschberg M, Hoffman RM, Friedl P (2009) Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr Opin Biotechnol 20:54–62PubMedCrossRefGoogle Scholar
  2. Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43:266–281PubMedCrossRefGoogle Scholar
  3. Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q et al (2003) 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798PubMedGoogle Scholar
  4. Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50:493–496PubMedCrossRefGoogle Scholar
  5. Bhakoo KK, Williams SR, Florian CL, Land H, Noble MD (1996) Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res 56:4630–4635PubMedGoogle Scholar
  6. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748PubMedCrossRefGoogle Scholar
  7. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W (1999) Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT–initial experience. Radiology 210:269–276PubMedGoogle Scholar
  8. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870PubMedCrossRefGoogle Scholar
  9. Chen X (2006) Multimodality imaging of tumor integrin alphavbeta3 expression. Mini Rev Med Chem 6:227–234PubMedCrossRefGoogle Scholar
  10. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 64:8009–8014PubMedCrossRefGoogle Scholar
  11. Cui K, Xu X, Zhao H, Wong ST (2008) A quantitative study of factors affecting in vivo bioluminescence imaging. Luminescence 23:292–295PubMedCrossRefGoogle Scholar
  12. Dandekar M, Tseng JR, Gambhir SS (2007) Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med 48:602–607PubMedCrossRefGoogle Scholar
  13. de la Zerda A, Bodapati S, Teed R, Schipper ML, Keren S, Smith BR et al (2009) A comparison between time domain and spectral imaging systems for imaging quantum dots in small living animals. Mol Imaging Biol 11:127–133Google Scholar
  14. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN et al (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110–117PubMedGoogle Scholar
  15. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  16. Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE, Deorukhkar A, Shentu S, Kuno N et al (2008) Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14: 731–741PubMedCrossRefGoogle Scholar
  17. Dinkel J, Bartling SH, Kuntz J, Grasruck M, Kopp-Schneider A, Iwasaki M et al (2008) Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging. Circ Cardiovasc Imaging 1:235–243PubMedCrossRefGoogle Scholar
  18. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R et al (2001) Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 98:9300–9305PubMedCrossRefGoogle Scholar
  19. Dunn KW, Sutton TA (2008) Functional studies in living animals using multiphoton microscopy. ILAR J 49:66–77PubMedCrossRefGoogle Scholar
  20. Flores JE, McFarland LM, Vanderbilt A, Ogasawara AK, Williams SP (2008) The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imaging Biol 10:192–200PubMedCrossRefGoogle Scholar
  21. Foley LM, Towner RA, Painter DM (2001) In vivo image-guided (1)H-magnetic resonance spectroscopy of the serial development of hepatocarcinogenesis in an experimental animal model. Biochim Biophys Acta 1526:230–236PubMedCrossRefGoogle Scholar
  22. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMedGoogle Scholar
  23. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedCrossRefGoogle Scholar
  24. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  25. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61PubMedCrossRefGoogle Scholar
  26. Gilad AA, McMahon MT, Walczak P, Winnard PT Jr, Raman V, van Laarhoven HW et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219PubMedCrossRefGoogle Scholar
  27. Gilead A, Meir G, Neeman M (2004) The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int J Cancer 108:524–531PubMedCrossRefGoogle Scholar
  28. Ginj M, Zhang H, Eisenwiener KP, Wild D, Schulz S, Rink H et al (2008) New pansomatostatin ligands and their chelated versions: affinity profile, agonist activity, internalization, and tumor targeting. Clin Cancer Res 14:2019–2027PubMedCrossRefGoogle Scholar
  29. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMedGoogle Scholar
  30. Hara T, Kosaka N, Kishi H (2002) Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199PubMedGoogle Scholar
  31. Harada H, Kizaka-Kondoh S, Hiraoka M (2005) Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 4:182–193PubMedGoogle Scholar
  32. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL et al (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMedGoogle Scholar
  33. Hnatowich DJ (1999) Antisense and nuclear medicine. J Nucl Med 40:693–703PubMedGoogle Scholar
  34. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806PubMedCrossRefGoogle Scholar
  35. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943PubMedGoogle Scholar
  36. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 98:14595–14600PubMedCrossRefGoogle Scholar
  37. Johnson M, Karanikolas BD, Priceman SJ, Powell R, Black ME, Wu HM et al (2009) Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. J Nucl Med 50:757–764PubMedCrossRefGoogle Scholar
  38. Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(suppl 2):164S–179SPubMedCrossRefGoogle Scholar
  39. Keyaerts M, Verschueren J, Bos TJ, Tchouate-Gainkam LO, Peleman C, Breckpot K et al (2008) Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: -luciferin: effect on intensity, time kinetics and repeatability of photon emission. Eur J Nucl Med Mol Imaging 35:999–1007PubMedCrossRefGoogle Scholar
  40. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122PubMedCrossRefGoogle Scholar
  41. Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, Bohlen P, Miller DW, Mueller MA, Semmler W, Fusenig NE, Delorme S (2004) Dynamic contrast enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF-receptor 2 blockade with DC101. Neoplasia 6:213–223Google Scholar
  42. Kiessling F, Jugold M, Woenne EC, Brix G (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 17:2136–2148PubMedCrossRefGoogle Scholar
  43. Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16:627–642PubMedCrossRefGoogle Scholar
  44. Kim KI, Chung JK, Kang JH, Lee YJ, Shin JH, Oh HJ et al (2005) Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter. Clin Cancer Res 11:123–128PubMedGoogle Scholar
  45. Kimura RH, Cheng Z, Gambhir SS, Cochran JR (2009) Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 69:2435–2442PubMedCrossRefGoogle Scholar
  46. Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63: 6838–6846PubMedGoogle Scholar
  47. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP et al (2007) A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med 13:992–997PubMedCrossRefGoogle Scholar
  48. Kovar JL, Simpson MA, Schutz-Geschwender A, Olive DM (2007) A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem 367:1–12PubMedCrossRefGoogle Scholar
  49. Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM (2009) Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem 384:254–262PubMedCrossRefGoogle Scholar
  50. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRefGoogle Scholar
  51. Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32:663–671PubMedCrossRefGoogle Scholar
  52. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294PubMedCrossRefGoogle Scholar
  53. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373PubMedGoogle Scholar
  54. Lederle W, Linde N, Heusel J, Bzyl J, Woenne EC, Zwick S et al (2010) Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am J Pathol 176:981–994PubMedCrossRefGoogle Scholar
  55. Lendvai G, Estrada S, Bergstrom M (2009) Radiolabelled oligonucleotides for imaging of gene expression with PET. Curr Med Chem 16:4445–4461PubMedCrossRefGoogle Scholar
  56. Li XF, Zanzonico P, Ling CC, O’Donoghue J (2006) Visualization of experimental lung and bone metastases in live nude mice by X-ray micro-computed tomography. Technol Cancer Res Treat 5:147–155PubMedGoogle Scholar
  57. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRefGoogle Scholar
  58. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662PubMedCrossRefGoogle Scholar
  59. Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMedGoogle Scholar
  60. Mansi R, Wang X, Forrer F, Kneifel S, Tamma ML, Waser B et al (2009) Evaluation of a 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249PubMedCrossRefGoogle Scholar
  61. McGivan JD, Pastor-Anglada M (1994) Regulatory and molecular aspects of mammalian amino acid transport. Biochem J 299(pt 2):321–334PubMedGoogle Scholar
  62. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedCrossRefGoogle Scholar
  63. Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38:2079–2084PubMedCrossRefGoogle Scholar
  64. Modo M, Bulte J (2007) Cellular and molecular MR imaging. CRC, Boca Raton, pp 209–210CrossRefGoogle Scholar
  65. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336PubMedCrossRefGoogle Scholar
  66. Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758PubMedCrossRefGoogle Scholar
  67. Moroz E, Carlin S, Dyomina K, Burke S, Thaler H, Blasberg R et al (2009) Real-time imaging of HIF-1a stabilization and degradation. Plos One 4:e5077PubMedCrossRefGoogle Scholar
  68. Mulder WJ, van der Schaft DW, Hautvast PA, Strijkers GJ, Koning GA, Storm G et al (2007) Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB J 21:378–383PubMedCrossRefGoogle Scholar
  69. Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380PubMedCrossRefGoogle Scholar
  70. O’Donoghue JA, Zanzonico P, Pugachev A, Wen B, Smith-Jones P, Cai S et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61:1493–1502PubMedCrossRefGoogle Scholar
  71. Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916PubMedCrossRefGoogle Scholar
  72. Ou G, Itasaka S, Zeng L, Shibuya K, Yi J, Harada H et al (2009) Usefulness of HIF-1 imaging for determining optimal timing of combining bevacizumab and radiotherapy. Int J Radiat Oncol Biol Phys 75:463–467PubMedCrossRefGoogle Scholar
  73. Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA et al (2008a) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res 68:7042–7049PubMedCrossRefGoogle Scholar
  74. Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM et al (2008b) Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7:101–109PubMedCrossRefGoogle Scholar
  75. Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M et al (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11:856–863PubMedGoogle Scholar
  76. Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijman H et al (2007) Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244:449–456PubMedCrossRefGoogle Scholar
  77. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(suppl 2):43S–63SPubMedCrossRefGoogle Scholar
  78. Rabinovich BA, Ye Y, Etto T, Chen JQ, Levitsky HI, Overwijk WW et al (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A 105: 14342–14346PubMedCrossRefGoogle Scholar
  79. Ramirez de Molina A, Banez-Coronel M, Gutierrez R, Rodriguez-Gonzalez A, Olmeda D, Megias D et al (2004) Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res 64:6732–6739PubMedCrossRefGoogle Scholar
  80. Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67:3085–3093PubMedCrossRefGoogle Scholar
  81. Reinhardt M, Hauff P, Briel A, Uhlendorf V, Linker RA, Maurer M et al (2005) Sensitive particle acoustic quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations. Invest Radiol 40:2–7PubMedGoogle Scholar
  82. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738PubMedCrossRefGoogle Scholar
  83. Safran M, Kim WY, O’Connell F, Flippin L, Gunzler V, Horner JW et al (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A 103:105–110PubMedCrossRefGoogle Scholar
  84. Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T et al (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108PubMedCrossRefGoogle Scholar
  85. Serganova I, Humm J, Ling C, Blasberg R (2006) Tumor hypoxia imaging. Clin Cancer Res 12:5260–5264PubMedCrossRefGoogle Scholar
  86. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRefGoogle Scholar
  87. Sundararajan L, Linden HM, Link JM, Krohn KA, Mankoff DA (2007) 18F-Fluoroestradiol. Semin Nucl Med 37:470–476PubMedCrossRefGoogle Scholar
  88. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56:4087–4095PubMedGoogle Scholar
  89. Tropres I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF et al (2001) Vessel size imaging. Magn Reson Med 45:397–408PubMedCrossRefGoogle Scholar
  90. Ullrich RT, Zander T, Neumaier B, Koker M, Shimamura T, Waerzeggers Y et al (2008) Early detection of erlotinib treatment response in NSCLC by 3′-deoxy-3′-[F]-fluoro-L-thymidine ([F]FLT) positron emission tomography (PET). PLoS One 3:e3908PubMedCrossRefGoogle Scholar
  91. Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62:642–646PubMedGoogle Scholar
  92. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  93. Verrey F (2003) System L: Heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Archiv 445:529–533PubMedGoogle Scholar
  94. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483PubMedCrossRefGoogle Scholar
  95. Wei LH, Su H, Hildebrandt IJ, Phelps ME, Czernin J, Weber WA (2008) Changes in tumor metabolism as readout for mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma. Clin Cancer Res 14:3416–3426PubMedCrossRefGoogle Scholar
  96. Woo SK, Lee TS, Kim KM, Kim JY, Jung JH, Kang JH et al (2008) Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35:143–150PubMedCrossRefGoogle Scholar
  97. Wu AM (2009) Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 50:2–5PubMedCrossRefGoogle Scholar
  98. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  99. Zannetti A, Del Vecchio S, Iommelli F, Del Gatto A, De Luca S, Zaccaro L et al (2009) Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5). Clin Cancer Res 15:5224–5233PubMedCrossRefGoogle Scholar
  100. Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M et al (2009) Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imaging 29:1125–1133PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity Hospital FreiburgFreiburgGermany
  2. 2.Department of Experimental Molecular ImagingRWTH-Aachen, University Clinics, Helmholtz-Institute for Biomedical EngineeringAachenGermany

Personalised recommendations