The Desulfurization Pathway in Rhodococcus

Part of the Microbiology Monographs book series (MICROMONO, volume 16)


The emission of sulfur oxides can have harmful effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some bacteria, like Rhodococcus, have been used or studied to upgrade the fossil fuels on sulfur content limitation. Recent advances have demonstrated the desulfurization pathway and the molecular mechanism for biodesulfurization. In addition, genetic technology was also used to improve sulfur-removal efficiencies. In this chapter, we summarize the mechanism of biodesulfurization in Rhodococcus.



We gratefully acknowledge the support for our research from the Natural Science Foundation of Tianjin, China (grant numbers 05YFJMJC00700, 09JCZDJC18000). We also thank the publisher of the American Society of Microbiology and the American Society for Biochemistry and Molecular Biology to offer kindly help with useful pictures.


  1. Albano C, Randers-Eichhorn L, Bentley W, Rao G (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnol Prog 14:351–354PubMedCrossRefGoogle Scholar
  2. Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698PubMedCrossRefGoogle Scholar
  3. Atlas RM (1994) Petroleum microbiology. Macmillan, New York, NYGoogle Scholar
  4. Atlas RM, Boron DJ, Deever WR, Johnson AR, McFarland BL, Meyer JA (2001) Method for removing organic sulfur from heterocyclic sulfur containing organic compounds. US patent H1, 986Google Scholar
  5. Borgne S, Quintero R (2003) Review: biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169CrossRefGoogle Scholar
  6. Cha H, Wu C, Valdes J, Rao G, Bentley W (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein protein expression and solubility. Biotechnol Bioeng 67:565–574PubMedCrossRefGoogle Scholar
  7. Chen H, Zhang WJ, Chen JM, Cai YB, Li W (2008) Desulfurization of various organic sulfur compounds and the mixture of DBT+4, 6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634PubMedCrossRefGoogle Scholar
  8. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359PubMedCrossRefGoogle Scholar
  9. Darzins A, Xi L, Childs JD, Monticello DJ, Squires CH (1999) DSZ gene expression in pseudomonas hosts. US Patent 5952208Google Scholar
  10. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, al-Hawari J, Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci. Appl Environ Microbiol 63:2915–2919PubMedGoogle Scholar
  11. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716PubMedGoogle Scholar
  12. Dosomer JP, Dhaese P, Montagu MV (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J Bacteriol 170:2401–2405Google Scholar
  13. Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant tween 80 enhances biodesulfurization. Appl Environ Microbiol 72:7390–7393PubMedCrossRefGoogle Scholar
  14. Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalyst. Environ Microbiol 2:687–694PubMedCrossRefGoogle Scholar
  15. Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulphurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36PubMedCrossRefGoogle Scholar
  16. Gallardo ME, Ferrandez A, De LV, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160PubMedGoogle Scholar
  17. Gaudu P, Touati D, Niviere V, Fontecave M (1994) The NAD(P)H: flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J Biol Chem 269:8182–8185PubMedGoogle Scholar
  18. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553PubMedCrossRefGoogle Scholar
  19. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709PubMedCrossRefGoogle Scholar
  20. Gray KA, Mrachkoyz GT, Squiresy CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235PubMedCrossRefGoogle Scholar
  21. Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188PubMedGoogle Scholar
  22. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366PubMedCrossRefGoogle Scholar
  23. Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246PubMedCrossRefGoogle Scholar
  24. Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J Ferment Bioeng 71:194–196CrossRefGoogle Scholar
  25. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shinao M (1994) Selective desulphurisation of dibenzothiophene by R. erythropolis D-1. Appl Environ Microbiol 60:223–226PubMedGoogle Scholar
  26. Ji YE, Colston MJ, Cox RA (1994) The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slowgrowers. Microbiology 140:2829–2840PubMedCrossRefGoogle Scholar
  27. Kawatra SK, Eisele TC (2001) Coal desulfurization, high-efficiency preparation methods. Taylor & Francis, New YorkGoogle Scholar
  28. Kayser KJ (2002) Molecular biological characterization and enhancement of the biodesulfurization (DSZ) pathway. PhD thesis, Illinois Institute of Technology 106 pagesGoogle Scholar
  29. Kertesz L (2001) Building a scientific foundation for prevention. Healthplan 42:44–47PubMedGoogle Scholar
  30. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314PubMedCrossRefGoogle Scholar
  31. Kilbane JJ, Bielaga BA (1990) Toward sulfur-free fuels. Chemtech 20:747–751Google Scholar
  32. Kilbane JJ, Jackowski K (1992) Biodesulphurisation of watersoluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114PubMedCrossRefGoogle Scholar
  33. Kirimura K, Furuya T, Sato R, Ishii Y, Kino K, Usami S (2002) Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl Environ Microbiol 68:3867–3872PubMedCrossRefGoogle Scholar
  34. Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by single bacterial strain. FEMS Microbiol Lett 187:123–126PubMedCrossRefGoogle Scholar
  35. Koike H, Sasaki H, Kobori T, Zenno S, Saigo K, Murphy MEP, Adman ET, Tanokura M (1998) 1.8 Å crystal structure of the major NAD-(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate- analog binding, and comparison with related flavoproteins. J Mol Biol 280:259–273PubMedCrossRefGoogle Scholar
  36. Konishi J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon–sulfur bond-targeted desulfurization of benzothiophene by thermophile Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154PubMedCrossRefGoogle Scholar
  37. Kropp KG, Fedorak PM (1998) A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–622PubMedCrossRefGoogle Scholar
  38. Kropp P, Gerber WD (1998) Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci Lett 257:73–76PubMedCrossRefGoogle Scholar
  39. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedGoogle Scholar
  40. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2004) Crystallization and preliminary X-ray analyses of desulfurization enzyme DszB and its C27S mutant complexed with biphenyl-2-sulfinic acid. Acta Crystallogr D 60:1636–1638PubMedCrossRefGoogle Scholar
  41. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2- sulfinic acid desulfinase. J Biol Chem 281:32534–32539PubMedCrossRefGoogle Scholar
  42. Lei X, Squires CH, Monticello DJ, Child D (1997) A Flavin Reductase Stimulates DszA and DszC Proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75CrossRefGoogle Scholar
  43. Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory region of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418PubMedGoogle Scholar
  44. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurizationtreated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301–307PubMedCrossRefGoogle Scholar
  45. Li FL, Xu P, Feng JH, Meng L, Zheng Y, Luo LL, Ma CQ (2005a) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276–281PubMedCrossRefGoogle Scholar
  46. Li W, Zhang Y, Wang MD, Shi Y (2005b) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50PubMedCrossRefGoogle Scholar
  47. Li GQ, Ma T, Li JH, Li H, Liu RL (2006a) Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli. Acta Microbiol Sin 46:275–279Google Scholar
  48. Li W, Wang MD, Chen H, Chen JM, Shi Y (2006b) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179PubMedCrossRefGoogle Scholar
  49. Li FL, Zhang ZZ, Feng JH, Cai XF, Xu P (2007a) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228PubMedCrossRefGoogle Scholar
  50. Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007b) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71:849–854PubMedCrossRefGoogle Scholar
  51. Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976Google Scholar
  52. Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY (2003) Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J 13:1–6Google Scholar
  53. Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived minitransposons. Methods Enzymol 235:386–405PubMedCrossRefGoogle Scholar
  54. Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33:218–222CrossRefGoogle Scholar
  55. Ma CQ, Feng JH, Zeng YY, Cai XF, Sun BP, Zhang ZB, Blankespoor HD, Xu P (2006a) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169PubMedCrossRefGoogle Scholar
  56. Ma T, Li GQ, Li J, Liang FL, Liu RL (2006b) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28:1095–1100PubMedCrossRefGoogle Scholar
  57. Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reduced involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184PubMedCrossRefGoogle Scholar
  58. Matsui T, Hirasawa K, Koizumi KI, Maruhashi K, Kurane R (2001) Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol Lett 23:1715–1718CrossRefGoogle Scholar
  59. Matsui T, Noda K, Tanaka Y, Maruhashi K, Kurane R (2002) Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr Microbiol 45:240–244PubMedCrossRefGoogle Scholar
  60. McFarland BL, BoronDJ DeeverW, Meyer JA, JohnsonAR ARM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147PubMedCrossRefGoogle Scholar
  61. Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtech 28:38–45Google Scholar
  62. Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 49:756–760PubMedGoogle Scholar
  63. Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2′-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene- desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta 1598:122–130PubMedCrossRefGoogle Scholar
  64. Noda K, Kimiko W, Kenji M (2002) Cloning of a rhodococcal promoter using a transposon for dibenthiophene biodesulfurization. Biotechnol Lett 24:1875–1882CrossRefGoogle Scholar
  65. Noda K, Watanabe K, Maruhashi K (2003) Isolation of the Pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J Biosci Bioeng 95:504–511PubMedGoogle Scholar
  66. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedGoogle Scholar
  67. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9PubMedCrossRefGoogle Scholar
  68. Ohshiro T, Izumi Y (2000) Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization. Bioseparation 9:185–188PubMedCrossRefGoogle Scholar
  69. Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344CrossRefGoogle Scholar
  70. Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252CrossRefGoogle Scholar
  71. Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and Characterization of Dibenzothiophene (DBT) Sulfone Monooxygenase, an Enzyme Involved in DBT Desulfurization, from Rhodococcus erythropolis D-l. J Biosci Bioeng 88:610–616PubMedCrossRefGoogle Scholar
  72. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an Enzyme Involved in the Dibenzothiophene Desulfurization Pathway, from Rhodococcus erythropolis KA2-5-1 by Site-Directed Mutagenesis. Biosci Biotechnol Biochem 71:2815–2821PubMedCrossRefGoogle Scholar
  73. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. IGTS8 (ATCC 53968). Microbiology 143:2961–2973PubMedCrossRefGoogle Scholar
  74. Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurization of benzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132PubMedCrossRefGoogle Scholar
  75. Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. Strain SY1. Appl Environ Microbiol 58:911–915PubMedGoogle Scholar
  76. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475PubMedGoogle Scholar
  77. Purdy RF, Lepo JE, Ward B (1993) Biodesulfurization of organicsulfur compounds. Curr Microbiol 27:219–222CrossRefGoogle Scholar
  78. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (1999) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79CrossRefGoogle Scholar
  79. Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99PubMedCrossRefGoogle Scholar
  80. Rhee SK, Chang JH, Chan YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331PubMedGoogle Scholar
  81. Shan GB, Xing JM, Luo MF, Liu HZ, Chen JY (2003) Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett 25:1977–1981PubMedCrossRefGoogle Scholar
  82. Shennan JL (1996) Microbial attack on sulfur-containing hydrocarbons, implications for the biodesulphurization of oils and coals. J Chem Technol Biotechnol 67:109–123CrossRefGoogle Scholar
  83. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596PubMedCrossRefGoogle Scholar
  84. Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328PubMedCrossRefGoogle Scholar
  85. Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328Google Scholar
  86. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization inbiophasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609PubMedCrossRefGoogle Scholar
  87. Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl) benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23PubMedCrossRefGoogle Scholar
  88. Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75PubMedCrossRefGoogle Scholar
  89. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89:361–366PubMedCrossRefGoogle Scholar
  90. Yu B, Xu P, Shi Q, Ma CQ (2006a) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58PubMedCrossRefGoogle Scholar
  91. Yu B, Ma CQ, Zhou WJ, Wang Y, Cai XF, Tao F, Zhang Q, Tong MY, Qu JY, Xu P (2006b) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.College of Life SciencesNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations