Advertisement

M

  • Axel M. Gressner
  • Torsten Arndt
Chapter
  • 7.1k Downloads

Literatur

  1. Enne W (1993) Knochenmark – Untersuchungsmethoden des Knochenmarks. In: Begemann H, Rastetter J (Hrsg) Klinische Hämatologie. 4. Aufl. Georg Thieme Verlag, Stuttgart, S 32Google Scholar
  2. Calandra, T, Roger, T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol; 3:791-800PubMedCrossRefGoogle Scholar
  3. Conroy H, Mawhinney L, Donnelly SC (2010) Inflammation and cancer: macrophage migration inhibitory factor (MIF)–the potential missing link. QJM; 103;831-836PubMedCrossRefGoogle Scholar
  4. Aoubala M, Douchet I, Laugier R et al (1993) Purification of Human Gastric Lipase by Immunoaffinity and Quantification of this Enzyme in the Duodenal Contents Using a New ELISA Procedure. Biochim Biophys Acta 1169;183-189PubMedCrossRefGoogle Scholar
  5. Thomas L (2007) (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 7. Aufl. TH-Books, Frankfurt/MainGoogle Scholar
  6. Metz DC, Starr JA (2000) A Retrospective Study of the Usefulness of Acid Secretory Testing. Aliment Pharmacol Ther 14;103-111PubMedCrossRefGoogle Scholar
  7. Goldschmidt M, Feldman M (1997) Gastric Secretion in Health and Disease. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal Disease. Vol 1. Elsevier, New York, pp 524-544Google Scholar
  8. Külpmann WR, Stummvoll HK, Lehmann P (2003) Elektrolyte, Säure-Basen und Blutgase. 3. Aufl. Springer-Verlag, Wien New YorkCrossRefGoogle Scholar
  9. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 291CrossRefGoogle Scholar
  10. Selberg O, Chemnitz G, Ehlers B et al (1997) Macrolipasaemia in a patient with pancreas divisum and acute abdominal pain: a case report. Scand J Clin Lab Invest 57:435-444PubMedCrossRefGoogle Scholar
  11. Davies III AE (1996) α2-Macroglobulin. In: Ritchie RF, Navolotskaia O (eds) Serum Proteins in Clinical Medicine. Vol. 1, Laboratory Section. 1st edn. Kap. 8.02. Foundation for Blood Research, Scarborough, pp 1-8Google Scholar
  12. Lee KN, Csako G, Bernhardt P et al (1994) Relevance of macro creatine kinase type 1 and type 2 isoenzymes to laboratory and clinical data. Clin Chem 40:1278-1283PubMedGoogle Scholar
  13. Neumann S, Lang H (1995) Entzündung – Monozyten und Makrophagen. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 1296-1299Google Scholar
  14. Suliman AM, Smith TP, Gibney J, McKenna TJ (2003) Frequent misdiagnosis and mismanagement of hyperprolactinemic patients before the introduction of macroprolactin screening: application of a new strict laboratory definition of macroprolactinemia. Clin Chem 49:1504-1509PubMedCrossRefGoogle Scholar
  15. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 170-171Google Scholar
  16. Seitz HM, Maier W (1994) Parasitologie – Plasmodien, Erreger der Malaria. In: Brandis H, Köhler W, Eggers HJ et al (Hrsg) Lehrbuch der Medizinischen Mikrobiologie. Gustav Fischer Verlag, Stuttgart, S 658-665Google Scholar
  17. Köhler W, Eggers HJ, Fleischer B, Marre R, Pfister H, Pulverer G (2001) (Hrsg) Medizinische Mikrobiologie. 8. Aufl. Urban & Fischer-Verlag MünchenGoogle Scholar
  18. Grune T, Siems W, Esterbauer H (1992) Comparison of different assays for malondialdehyde using thiobarbituric acid. Fresenius. J Anal Chem 343:135Google Scholar
  19. Semenza G, Auricchio S (1995) Small-Intestinal Dissacharidases. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The Metabolic and Molecular Basis of Inherited Disease. Vol. 3. McGraw-Hill, New York, pp 4451-4480Google Scholar
  20. Meißner D (2002) Mangan. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Georg Thieme Verlag, Stuttgart New York, S 233-234Google Scholar
  21. Sagaert X, De Wolf-Peeters C (2003) Classification of B-cells according to their differentiation status, their micro-anatomical localisation and their development lineage. Immunol Lett 90:179-186PubMedCrossRefGoogle Scholar
  22. Leers MP, Kölgen W, Björklund V, Bergman T, Tribbick G, Persson B, Björklund P, Ramaekers FC, Björklund B, Nap M, Jörnvall H, Schutte B (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol; 187:567-572PubMedCrossRefGoogle Scholar
  23. Linder S (2007) Cytokeratin markers come of age. Tumour Biol; 28:189-195PubMedCrossRefGoogle Scholar
  24. Kramer G, Erdal H, Mertens HJ, Nap M, Mauermann J, Steiner G, Marberger M, Bivén K, Shoshan MC, Linder S (2004) Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res; 64:1751-1756PubMedCrossRefGoogle Scholar
  25. Sagaert X, De Wolf-Peeters C (2003) Classification of Bcells according to their differentiation status, their micro-anatomical localisation and their development lineage. Immunol Lett 90:179-186PubMedCrossRefGoogle Scholar
  26. Köhler W, Eggers HJ, Fleischer B, Marre R, Pfister H, Pulverer G (2001) (Hrsg) Medizinische Mikrobiologie. 8. Aufl. Urban & Fischer Verlag München. S 641-644Google Scholar
  27. Darai G, Handermann M, Sonntag HG, Tidona CA, Zöller L (2009) (Hrsg) Lexikon der Infektionskrankheiten des Menschen. 3. Aufl. Springer-Verlag Heidelberg Berlin New York. S 512-515Google Scholar
  28. Holleman AF, Wiberg E (1995) Lehrbuch der Anorganischen Chemie. W. de Gruyter, Berlin New YorkGoogle Scholar
  29. Murray KK et al (2005) IUPAC standard definitions of terms relating to mass spectrometry.www.msterms.com
  30. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  31. Murray KK et al (2005) IUPAC standard definitions of terms relating to mass spectrometry.www.msterms.com
  32. Hübschmann HJ (1996) Handbuch der GC-MS, Grundlagen und Anwendung. VCH, WeinheimCrossRefGoogle Scholar
  33. Barker J (1999) Mass Spectrometry. Wiley, New YorkGoogle Scholar
  34. Gerhards P, Bons U, Sawazki J et al (1996) GC/MS in der klinischen Chemie. VCH, WeinheimGoogle Scholar
  35. Lehmann WD (1996) Massenspektrometrie in der Biochemie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  36. Hollemann AF, Wiberg E (1995) Lehrbuch der anorganischen Chemie, 101. Aufl. W. de Gruyter, Berlin New YorkGoogle Scholar
  37. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  38. Laboratory Biosafety Manual. (1993) 2nd edn, World Health Organization (WHO), GenevaGoogle Scholar
  39. Stamm D, Büttner J (1995) Beurteilung Klinisch-Chemischer Analysenergebnisse. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  40. EN 12286, 1998Google Scholar
  41. EN ISO 17511,2003Google Scholar
  42. Nagase H, Woessner Jr JF (1999) Matrix Metalloproteinases. J Biol Chem 274:21491-21494PubMedCrossRefGoogle Scholar
  43. Visse R, Nagase H (2003) Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Circ Res 92:827-839PubMedCrossRefGoogle Scholar
  44. Galis ZS, Khatri JJ (2002) Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis. Circ Res 90:251-262PubMedGoogle Scholar
  45. Pavlaki M, Zucker S (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 22:177-203PubMedCrossRefGoogle Scholar
  46. Metz DC, Starr JA (2000) A Retrospective Study of the Usefulness of Acid Secretory Testing. Aliment Pharmacol Ther 14:103-111PubMedCrossRefGoogle Scholar
  47. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  48. Diagnostica MERCK (1986) Hämatologische Labormethoden. 4. Aufl. GIT-Verlag, Darmstadt, S 28-29Google Scholar
  49. Noris P, Spedini P, Belletti S et al (1998) Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin Anomaly): Clinical and laboratory findings. Am J Med 104:355-360PubMedCrossRefGoogle Scholar
  50. Dong F, Li S, Pujol-Moix N et al (2005) Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 130:620-627PubMedCrossRefGoogle Scholar
  51. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  52. Niestroj I (2001) Praxis der orthomolekularen Medizin. 2.Aufl. Hippokrates, StuttgartGoogle Scholar
  53. Stamm D, Büttner J (1995) Beurteilung klinisch-chemischer Analysenergebnisse. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 72-95Google Scholar
  54. Gesetz über Medizinprodukte vom 02. August 1994 (Medizinproduktegesetz– MPG)Google Scholar
  55. Richtlinie 90/385/EWG des Rates vom 20. Juni 1990 über aktive implantierbare medizinische GeräteGoogle Scholar
  56. Richtlinie 93/42/EWG des Rates vom 14. Juni 1993 über Medizinprodukte Richtlinie 98/79/EG des Europäischen Parlamentes und des Rates vom 27. Oktober 1998 über In-vitro-DiagnostikaGoogle Scholar
  57. Verordnung über das Errichten, Betreiben und Anwenden vonMedizinprodukten vom 01. Januar 2002Google Scholar
  58. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 292CrossRefGoogle Scholar
  59. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 293CrossRefGoogle Scholar
  60. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie, 5. Aufl. Georg Thieme Verlag, Stuttgart, S 154Google Scholar
  61. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 170-171Google Scholar
  62. Büttner J, Stamm D (1995) Ärztliche Verwendung von klinisch-chemischen Befunden. In: Greiling H, Gressner AM (Hsrg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 96-111Google Scholar
  63. Galen RS, Gambino SR (1979) Norm und Normabweichung klinischer Daten. G. Fischer-Verlag, StuttgartGoogle Scholar
  64. Tolleson WH (2005) Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23:105-161PubMedCrossRefGoogle Scholar
  65. Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523-531PubMedCrossRefGoogle Scholar
  66. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  67. Baltatzi M, Hatzitolios A, Tziomalos K et al (2008) Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract 62(9):1432-1440PubMedCrossRefGoogle Scholar
  68. Görtzen A, Veh RW (2007) Adipositas – Eine Einführung in molekulare Mechanismen. Obesity – an Introduction to Molecular Mechanisms. Dtsch Arztebl 104: A-1166/B-1039/C-991Google Scholar
  69. Dhillo WS (2007) Appetite regulation: an overview. Thyroid 17(5):433-445 (Review)PubMedCrossRefGoogle Scholar
  70. Wurtman RJ (1985) Melatonin as a Hormone in Humans: A History. Yale J Biol Med 58:547-552PubMedGoogle Scholar
  71. Wurtman RJ, Moskowitz MA (1977) The Pineal Organ. N Engl J Med 296:1329-1333PubMedCrossRefGoogle Scholar
  72. Manz B, Seidel A, Alexander H et al (1989) Development and Validation of a Radioimmunoassay for Serum Melatonin. J Clin Chem Clin Biochem 27:797-802PubMedGoogle Scholar
  73. Pompeiano O, Manzoni D, Miele F (2002) Pineal Gland Hormone and Idiopathic Scoliosis: Possible Effect of Melatonin on Sleep-Related Postural Mechanisms. Arch Ital Biol 140:129-158PubMedGoogle Scholar
  74. Kamath PS, Wiesner R H, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D’Ajmico G, Dickson ER, Kim ER (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33464-33470Google Scholar
  75. Botta F, Gianni E, Romagnoli P, Fasoli A, Malfatti F, Chiarbonello B, Testa E, Risso D, Colla G, Testa R (2003) MELD scoring system is useful for predicting prognosis in patients with liver cirrhosis and is correlated with residual liver functions: a European study. Gut 52:134-139PubMedCrossRefGoogle Scholar
  76. Klein J, Horejsi V (1997) Immunology. 2nd edn. Blackwell Sciences, Oxford, pp 375-378Google Scholar
  77. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  78. Mentzer WC Jr (1973) Differentiation of iron deficiency from thalassaemia trait. The Lancet 1:S 882CrossRefGoogle Scholar
  79. Rios A (2003) Qualitative assurance of qualitative analysis in the framework of the European project „MEQUALAN“. Accreditation and Quality Assurance. J for Quality, Comparability and Reliability in Chemical Measurement 8: 68-77Google Scholar
  80. Blom HJ, Ferenci P, Grimm G et al (1991) The Role of Methanethiol in the Pathogenesis of Hepatic Encephalopathy. Hepatology 13:445-454PubMedCrossRefGoogle Scholar
  81. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  82. Baselt RC (2004) Disposition of toxic drugs and chemicals in man. Biomedical Publications, Foster City, California 672-673www.gifte.de/Drogen/meskalin.htm
  83. Robinson BW et al (2007) Mesothelin-family proteins and diagnosis of mesothelioma. Lancet; 362:1612-1616CrossRefGoogle Scholar
  84. Beyer HL et al (2007) MESOMARK: a potential test for malignant pleural mesothelioma. Clin Chem; 53:666-672PubMedCrossRefGoogle Scholar
  85. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  86. Macdonald R (2006) Quality assessment of quantitative analytical results in laboratory medicine by root mean square of measurement deviation. J Lab Med 30:111-117Google Scholar
  87. Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (2008) Dtsch Arztebl 105:C301–315Google Scholar
  88. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML (1984) Internationales Wörterbuch der Metrologie (VIM), 2. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  89. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  90. Siggaard-Andersen O, Durst RA, Maas AHJ (1987) Approved recommendation (1984) on physico-chemical quantities and units in clinical chemistry. J Clin Chem Clin Biochem 25:369-391PubMedGoogle Scholar
  91. Stamm D (1995) Zuverlässigkeit von Messergebnissen. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  92. Uriano GA, Cali JP (1977) Role of Reference Materials and Reference Methods in the Measurement Process. In: De Voe JR (ed) Validation of the Measurement Process. Amer Chem Soc:140-161 [zitiert nach Stamm (1995)]Google Scholar
  93. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, StuttgartGoogle Scholar
  94. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, StuttgartGoogle Scholar
  95. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  96. ISO/IEC (2008) Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement. GenevaGoogle Scholar
  97. DIN (1999) Leitfaden zur Angabe der Unsicherheit beim Messen. DIN V ENV 13005. Beuth-Verlag, BerlinGoogle Scholar
  98. DIN (1995) Guide to the expression of uncertainty in measurement (Deutsche Übersetzung). Beuth-Verlag, BerlinGoogle Scholar
  99. Glass GV (1976) Primary, secondary, and meta-analysis of research. Educational Researcher 5:3-8Google Scholar
  100. Hedges LV, Olkin I (1985) Statistical methods for meta analysis. Academic Press, LondonGoogle Scholar
  101. Zschocke J, Hoffmann GF (2004) Vademecum Metabolicum – Diagnose und Therapie erblicher Stoffwechselkrankheiten. 3. Aufl. Milupa-Schattauer Verlag, StuttgartGoogle Scholar
  102. Zschocke J, Hoffmann GF (2004) Vademecum Metabolicum – Diagnose und Therapie erblicher Stoffwechselkrankheiten. 3. Aufl. Milupa-Schattauer Verlag, StuttgartGoogle Scholar
  103. Blau N, Blaskovics ME, Duran M (2003) Simple Tests in Urine and Blood. In: Blau N, Duran M, Blaskovics ME et al (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd ed. Springer-Verlag, Berlin Heidelberg New York, pp 3-10CrossRefGoogle Scholar
  104. Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551-8PubMedCrossRefGoogle Scholar
  105. Rükgauer M (2005) Labordiagnostik von Spurenelementen. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 6. Aufl. TH-Books, Frankfurt/Main, S 480-487Google Scholar
  106. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1-6PubMedCrossRefGoogle Scholar
  107. Malemud CJ (2006) Metalloproteinases (MMPs) in health and disease: an overview. Frontiers Bioscience 11:1696-1701CrossRefGoogle Scholar
  108. Stocker W, Grams F, Baumann U et al (1995) The metzincins – topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zincpeptidases. Prot Sci 4:823-840CrossRefGoogle Scholar
  109. Günther T (1995) Allgemeine Pathochemie und klinischchemische Diagnostik des Zink-Stoffwechsels. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. Schattauer Verlag, Stuttgart New York, S 530-532Google Scholar
  110. König H, Hallbach J (2009) Metamizole. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 202-203Google Scholar
  111. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 287-291CrossRefGoogle Scholar
  112. Eisenhofer G, Siegert G, Kotzerke J, Bornstein SR, Pacak K (2008): Current progress and future challenges in the biochemical diagnosis and treatment of pheochromocytomas and paragangliomas. Horm Metab Res 40: 329-337PubMedCrossRefGoogle Scholar
  113. Whiting MJ, Doogue MP (2009): Advances in Biochemical Screening for Phaeochromocytoma using Biogenic Amines. Clin Biochem Rev 30: 3-17PubMedGoogle Scholar
  114. Unger N, Pitt Ch, Schmidt L, Walz MK, Schmid KW, Philipp Th, Mann K, Petersenn S (2006): Diagnostic value of various biochemical parameters for the diagnosis of pheochromocytoma in patients with adrenal mass. Europ J Endocrinol 54: 409-417CrossRefGoogle Scholar
  115. Käferstein H, Schmoldt A (2009) Methadone. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 230-240Google Scholar
  116. Evelyn KA, Malloy HT (1938) Microdetermination of oxyhemoglobin, methemoglobin and sulfhemoglobin in a single sample of blood. J Biol Chem 126:655-662Google Scholar
  117. Richterich R, Colombo JP (1978) Klinische Chemie. 4. Aufl. Karger, BaselGoogle Scholar
  118. Degel F, Desel H (2009) Other highly volatile alcohols and ketones. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 517-523Google Scholar
  119. Degussa und das liebe Vieh – die Erfolgsgeschichte des Methionin (www.degussa-geschichte.de)
  120. Duran M (2008) Amino acids. In: Blau N, Duran M, Gibson KM (eds) Laboratory Guide to the Methods in Biochemical Genetics, Springer-Verlag, Berlin Heidelberg New York, pp 53-90CrossRefGoogle Scholar
  121. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. IUPAC recommendations. 2nd ed. Blackwell Science, OxfordGoogle Scholar
  122. Bircher J, Sommer W (1999) Klinisch-pharmakologische Datensammlung, 2. Aufl. Wiss. Verlagsges., StuttgartGoogle Scholar
  123. Blau N, Duran M; Blaskovics ME, Gibson KM (2003) (eds) Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  124. Kopitz J, Harzer K, Kohlschütter A et al (1996) Methylamine accumulation in cultured cells as a measure of the aqueous storage compartment in the laboratory diagnosis of genetic lysosomal diseases. Am J Med Genet 63(1):198-202PubMedCrossRefGoogle Scholar
  125. Blau N, Duran M; Blaskovics ME, Gibson KM (2003) (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  126. Blau N, Duran M, Blaskovics ME et al (2003) (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  127. McCarthy C, Ryan F, Vaugham J (2004) Increased frequency of the MTHFR A1298C Mutation in an Irish population. Clin Chem 50:2462-2463PubMedCrossRefGoogle Scholar
  128. Schwahn B, Rozen R (2001) Polymorphisms in the methylenetetrahydrofolate reductase gene. Am J Pharmacogenomics 3:189-201CrossRefGoogle Scholar
  129. Blau N, Duran M, Blaskovics ME et al (2003) (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  130. Bremer HJ, Duran M, Kamerling JP et al (1981) Disturbances of Aminoacid Metabolism: Clinical Chemistry and Diagnosis, Urban & Schwarzenberg, München BaltimoreGoogle Scholar
  131. Duran M (2008) Amino acids. In: Blau N, Duran M, Gibson KM (eds) Laboratory Guide to the Methods in Biochemical Genetics, Springer-Verlag, Berlin Heidelberg New York pp53–90CrossRefGoogle Scholar
  132. Bremer HJ, Duran M, Kamerling JP et al (1981) Disturbances of Aminoacid Metabolism: Clinical Chemistry and Diagnosis, Urban & Schwarzenberg, München BaltimoreGoogle Scholar
  133. Duran M (2008) Amino acids. In: Blau N, Duran M, Gibson KM (eds) Laboratory Guide to the Methods in Biochemical Genetics, Springer-Verlag, Berlin Heidelberg New York pp53–90CrossRefGoogle Scholar
  134. Blau N, Duran M, Blaskovics ME et al (2003) (eds) Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  135. Blau N, Duran M, Blaskovics ME et al (2003) (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  136. Reinthaler A, Neunteufel W, Bieglmayer C et al (1990) The Metoclopramid-Provocation Test for Predicton of Transient Hyperprolactinemia during Cycle Stimulation. Fertil Steril 53:368-371Google Scholar
  137. Avgerinos PC, Yanovski JA, Oldfield EH et al (1994) The Metyropone and Dexamethasone Suppression Tests for the Differential Diagnosis of Adrenocorticotropin-Depent Cushing’s Syndrome: A Comparison. Ann Int Med 121:318-327PubMedGoogle Scholar
  138. Perry LA, Grossmann AB (1997) The Role of the Laboratory in the Diagnosis of Cushing’s Syndrome. Ann Clin Biochem 34:345-359PubMedGoogle Scholar
  139. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2010) Internationales Wörterbuch der Metrologie (VIM) Deutsch-englische Fassung. ISO/IEC-Leitfaden 99:2007. 3. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  140. Hoffmann GF, Haas D (2000) Disorders of Cholesterol Synthesis. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn Metabolic Diseases: Diagnosis and Treatment. 3rd edn. Springer-Verlag, Berlin Heidelberg New York, pp 337-342Google Scholar
  141. Poll-The BT, Frenkel J, Houten SM et al (2000) Mevalonic Aciduria in 12 Patients with Hyperimmunoglobulinaemia D and Periodic Fever Syndrome. J Inherit Metab Dis 23:363-366PubMedCrossRefGoogle Scholar
  142. König H, Schmoldt A (2009) Antidysrhythmic agents. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 271-285Google Scholar
  143. Stryer L (1990) Biochemie. Spektrum der Wissenschaft Verlagsgesellschaft, HeidelbergGoogle Scholar
  144. Greiling H, Gressner AM (Hrsg) (1995) Lehrbuch der Klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  145. Falbe J, Regitz M (Hrsg) (1996) Römpp Chemie Lexikon. 10. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  146. Richtlinien (Weiterbildungsordnungen) der für die/den Weiterzubildende(n) zuständigen regionalen LandesärztekammerGoogle Scholar
  147. Hofmann W, Ivandic M, Guder WG (1999) Marker der tubulären Nierenfunktion und ihr Einbau in eine diagnostische Strategie. J Lab Med 23:339-345Google Scholar
  148. Hjorth L, Helin I, Grubb A (2000) Age-Related Reference Limits for Urine Levels of Albumin, Orosomucoid, Immunoglobulin G and Protein HC in Children. Scand J Clin Lab invest 60:65-74PubMedCrossRefGoogle Scholar
  149. Lun A, Ivandic M, Priem F et al (1999) Evaluation of Pediatric Nephropathies by a Computerized Urine Expert System (UPES). Pediatr Nephrol 13:900-906PubMedCrossRefGoogle Scholar
  150. Thomas L (2007) β2-Mikroglobulin. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 7. Aufl. TH-Books, Frankfurt/Main, S 983-986Google Scholar
  151. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  152. Fels LM, Bundschuh I, Gwinner W et al (1994) Early Urinary Markers of Target Nephron Segments as Studied in Cadmium Toxicity. Kidney Int 46 (Suppl) 47:81-88Google Scholar
  153. Templin MF, Stoll D, Bachmann J et al (2004) Protein microarrays and multiplexed sandwich immunoassays: what beats the beads? Comb Chem High Throughput Screen 7:223-229PubMedCrossRefGoogle Scholar
  154. Kessova I, Cederbaum AI (2003) CYP2E1: Biochemistry, toxicology, regulation and function in ethanol-induced liver injury. Curr Mol Med 3:509-518PubMedCrossRefGoogle Scholar
  155. Villeneuve JP, Pichette V (2004) Cytochrome P450 and liver diseases. Curr Drug Metabolism 5:273-282CrossRefGoogle Scholar
  156. Lieber CS (2004) The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metabolism Reviews 36:511-529PubMedCrossRefGoogle Scholar
  157. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New Yrk, S 170Google Scholar
  158. Hallman L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  159. Köhler G, Milstein C (1975) Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 256:495-497PubMedCrossRefGoogle Scholar
  160. Hilgers RD, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  161. Klein HG, Anstee DJ (2005) Mollison’s 11th Edition, Blood Transfusion in Clinical Medicine, a revision of the 10th edition written by Mollison PL, Engelfriet CP, Contreras M. Blackwell Publishing, OxfordGoogle Scholar
  162. Salama A, Mueller-Eckhardt C (1993) Immunhämolytische Anämien. In: Begermann H, Rastetter, J (Hrsg) Klinische Hämatologie, Georg Thieme, Stuttgart, New York, S 313-336Google Scholar
  163. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  164. Kouri T, Fogazzi G, Gant V, Hallander H, Hofmann W, Guder WG (2000) European Urinalysis Guidelines. Scand J Clin Lab Invest 60,Suppl 231Google Scholar
  165. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  166. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  167. Lottspeich F, Engels JW (Hrsg) (2012) Bioanalytik, 3. Aufl. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  168. Lottspeich F, Zorbas H (Hrsg) (2008) Bioanalytik. Spektrum Akademischer Verlag, 2. Aufl. HeidelbergGoogle Scholar
  169. Daniels, G (2002) Human Blood Groups. 2. Aufl. Blackwell Scientific, OxfordCrossRefGoogle Scholar
  170. Reid ME, Lomas-Francis C (2004) The Blood Group Antigen Facts Book. 2. Aufl. Elsevier, New YorkGoogle Scholar
  171. Klein HG, Anstee DJ (2005) Mollison’s 11th Edition, Blood Transfusion in Clinical Medicine, a revision of the 10th edition written by Mollison PL, Engelfriet CP, Contreras M. Blackwell Publishing, OxfordGoogle Scholar
  172. Ettre LS (1993) Nomenclature for Chromatography. Pure Appl Chem 65:819-872CrossRefGoogle Scholar
  173. Unger KK (Hrsg) (1989) Handbuch der HPLC. Teil 1 Leitfaden für Anfänger und Praktiker. GIT Verlag, DarmstadtGoogle Scholar
  174. Ewers U, Wilhelm M (2001) Diagnostik der inneren Exposition (Human-Biomonitoring). In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft Landsberg/Lech, III-2.1Google Scholar
  175. Lottspeich F, Zorbas H (Hrsg) (2008) Bioanalytik. Spektrum Akademischer Verlag, 2. Aufl. HeidelbergGoogle Scholar
  176. Westermeier R (1990) Elektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  177. McCullagh P, Nelder JA (1983) Generalized Linear Models. Chapman & Hall, LondonGoogle Scholar
  178. Rasch D (1988) Biometrisches Wörterbuch. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  179. Ubeda F, Wilkins JF (2008) Imprinted genes and human disease: an evolutionary perspective. Adv Exp Med Biol 626:101-115PubMedCrossRefGoogle Scholar
  180. Westermann P, Wittmann-Liebold B (2002) Enzym- und Proteinanalytik. In: Ganten D, Ruckpaul K (Hrsg) Grundlagen der Molekularen Medizin. 2. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 455-457Google Scholar
  181. Daunderer M (1995) Drogenhandbuch für Klinik und Praxis: Diagnostik, Therapie, Nachweis, Prophylaxe, Recht, Drogenprofile. ecomed verlagsgesellschaft AG Co. KG, LandsbergGoogle Scholar
  182. WHO (1977) The SI for the health professions. WHO, GenfGoogle Scholar
  183. Näser KH, Peschel G (1986) Physikalisch-chemische Messmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  184. Reiss J, Anke M (2002) Molybdän. In: Biesalski HK, Köhrle J, Schümann K (Hrsg) Vitamine, Spurenelemente und Mineralstoffe. Georg Thieme Verlag, Stuttgart New York, S 218-221Google Scholar
  185. Gressner A M (1980) Evaluation of the Assay for Serum Monoamine Oxidase – an Index of Hepatic Fibrosis. J Clin Chem Clin Biochem 18:921-927PubMedGoogle Scholar
  186. Nicotra A, Pierucci F, Parvez H et al (2004) Monoamino Oxidase Expression during Development and Aging. Neurotoxicology 25:155-165PubMedCrossRefGoogle Scholar
  187. Näser KH, Peschel G (1986) Physikalisch-chemische Messmethoden. 4. Aufl. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  188. Bux J, Kober B, Kiefel V, Mueller-Eckhardt C (1993) Analysis of granulocyte-reactive antibodies using an immunoassay based upon monoclonal antibody-spec. immobilization of granulocyte antigens (MAIGA). Transf Med 3:157-162CrossRefGoogle Scholar
  189. Petty AC (1993) Monoclonal antibody-specific immobilisation of erythrocyte antigens (MAIEA), J Immunol Methods 161: 91-95PubMedCrossRefGoogle Scholar
  190. Rosenthal AK Mandel N (2001) Identication of crystals in synovial fluid and joints. Curr Rheumatol Rep 3:11-16PubMedCrossRefGoogle Scholar
  191. Begemann H, Begemann M (1997) Praktische Hämatologie. 10. Aufl. Georg Thieme Verlag, Stuttgart, S 117-118Google Scholar
  192. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 287-291CrossRefGoogle Scholar
  193. Roos R et al (2000) Checkliste Neonatologie. Das Neo-ABC. 4. Aufl. Thieme Verlag, StuttgartGoogle Scholar
  194. Kouri T, Fogazzi G, Gant V, Halander H, Hofmann W, Guder WG (2000) European Urinalysis Guidelines. Scand J Clin Lab Invest 60,Suppl 231Google Scholar
  195. Käferstein H, Sticht G (2009) Morphine and morphine derivatives. In: Külpmann WR (ed) Clincial toxicological analysis. Wiley-VCH, Weinheim, pp 240-249Google Scholar
  196. Fachtagung der AG Nosokomiale Infektionen am Robert-Koch-Institut Berlin zur Intensivierung der Umsetzung vonPräventionsstrategien bei MRSA (2005) Epid Bull 5:31-38Google Scholar
  197. Brown DFJ, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, Wren MWD; Joint Working Party of the British Society for Antimicrobial Chemotherapy; Hospital Infection Society; Infection Control Nurses Association (2005) Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother 56:1000-1018Google Scholar
  198. Stieber P, Heinemann V (2008) Sinnvoller Einsatz von Tumormarkern. J Lab Med;32: 339-360Google Scholar
  199. Lamerz R (2007) MCA. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 7. Aufl. TH-Books, Frankfurt/Main, S 1313-1316Google Scholar
  200. Kleesiek K (1980) Gelenkerkrankungen: Klinisch-chemische und pathobiochemische Befunde zur Differentialdiagnose der Gelenkerkrankung. Med Welt 31:1609-1617PubMedGoogle Scholar
  201. Meikle PJ, Fuller M, Hopwood JJ (2003) Mass spectrometry in the study of lysosomal storage disorders. Cell Mol Biol 49:769-777PubMedGoogle Scholar
  202. Yogalingam G, Hopwood JJ (2001) Molecular genetics of mucopolysaccharidosis type IIIA and IIIB: Diagnostic, clinical and biological implications. Hum Mut 18:264-281PubMedCrossRefGoogle Scholar
  203. Hopwood JJ, Morris CP (1990) The mucopolysaccharidosis. Diagnosis, molecular genetics and treatment. Mol Biol Med 7:381-404PubMedGoogle Scholar
  204. Hopwood JJ, Harrison JR (1982) High-resolution electrophoresis of urinary glycosaminoglycans: an improved screening test for the mucopolysaccharidoses. Anal Biochem 119:120-127PubMedCrossRefGoogle Scholar
  205. Mullis K (1998) Dancing Naked in the Mind Field. Pantheon Books, New YorkGoogle Scholar
  206. Schwedt G (1995) Analytische Chemie. Grundlagen, Methoden und Praxis. Georg Thieme Verlag, StuttgartGoogle Scholar
  207. Darai G, Handermann M, Sonntag HG, Tidona CA, Zöller L (Hrsg) (2009) Lexikon der Infektionskrankheiten des Menschen, 3. Aufl. Springer-Verlag, Heidelberg, Berlin, New York 551-552Google Scholar
  208. Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über die ärztliche Betreuung während der Schwangerschaft und nach der Entbindung. Fassung vom 10. Dezember 1985, zuletzt geändert am 18. Juni 2009; in Kraft getreten am 26. August 2009Google Scholar
  209. Enders G, Exler S (2008) Untersuchungen vor und in der Schwangerschaft. In: Patienten-Information Labor Enders & Partner, StuttgartGoogle Scholar
  210. Shaw LM, Nichols A, Hale M et al (1998) Therapeutic monitoring of mycophenolic acid: a consensus panel report. Clin Biochem 31:317-322PubMedCrossRefGoogle Scholar
  211. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 290CrossRefGoogle Scholar
  212. Hoy A, Leininger-Müller B, Kutter D et al S (2002) Growing significance of myeloperoxidase in non-infectious diseases. Clin Chem Lab Med 40:2-8PubMedCrossRefGoogle Scholar
  213. Boll I (1991) Knochenmark-Zytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 287-290CrossRefGoogle Scholar
  214. Waites KB (2008) Ureaplasma Infection. eMedicine:http://www.emedicine.com/med/topic2340.htm
  215. Mardh PA (2004) Mycoplasma and Ureaplasma. In: Cohen J, Powderly WG (Hrsg) Infectious Diseases. 2. Aufl. Mosby, S 2309-2315Google Scholar
  216. Jacobs E (1997) Mycoplasma infections of the human respiratory tract. Wien Klin Wochenschr 109/14-15:574-577Google Scholar
  217. Waites KB, Balish MF, Atkinson TP (2008) New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections. Future Microbiol. 3(6): 635-648PubMedCrossRefGoogle Scholar
  218. The Joint European Society of Cardiology/American College of Cardiology Committee. Consensus Document. Myocardial Infarction Redefined – A Consensus Document of the Joint European Society (American College of Cardiology Committee for the Redefinition of Myocardial Infarction European Heart Journal (2000) 21:1502-1513Google Scholar
  219. Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA (2011) Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 27:133-155PubMedCrossRefGoogle Scholar
  220. Kendrick-Jones J, Hodge TP, Lister IMB et al (2004) Myosin superfamily. Online-Ressource:http://www.proweb.org/myosin/Review/articleframe.html (Stand: 21.10.2004)
  221. Tardiff JC (2004) Myosin at the heart of the problem. N Engl J Med 351:424-426PubMedCrossRefGoogle Scholar
  222. Kemp M, Donovan J, Higham H et al (2004) Biochemical markers of myocardial injury. Br J Anaesth 93:63-73PubMedCrossRefGoogle Scholar
  223. Hillis GS, Zhao N, Taggart P et al (1999) Utility of cardiac troponin I, creatine kinase-MB(mass), myosin light chain 1, and myoglobin in the early in-hospital triage of „high risk“ patients with chest pain. Heart 82:614-620PubMedGoogle Scholar
  224. Mair J, Thome-Kromer B, Wagner I et al (1994) Concentration time courses of troponin and myosin subunits after acute myocardial infarction. Coron Artery Dis 1994:865-872Google Scholar
  225. Suzuki T, Katoh H, Tsuchio Y et al (2000) Diagnostic implications of elevated levels of smooth-muscle myosin heavy-chain protein in acute aortic dissection. The smooth muscle myosin heavy chain study. Ann Intern Med 133:537-541PubMedGoogle Scholar
  226. Targoff IN, Trieu EP, Plotz PH, Miller FW (1992) Antibodies to glycyl-transfer RNA synthetase in patients with myositis and interstitial lung disease. Arthritis Rheum 35:821-830PubMedCrossRefGoogle Scholar
  227. Kato K, Katayama M, Fukatani S, Asano S, Oshima H, Yoshida T, Torikai K, Sudo Y, Yoshida N, Noda Y (1998) Anti-EJ antibody as diagnostic markers for a case of Polymyositis. Nippon Naika Gakkai Zasshi 87:338-339PubMedCrossRefGoogle Scholar
  228. Scheper T, Klatt P, Teegen B, Jarzabek-Chorzelska M, Kolacinska-Strasz Z, Meyer W, Schlumberger W, Stöcker W (2002) Anti-Mi-2 Western Blot: A new test for the serological detection of myositis specific autoantibodies. Autoimmunity Reviews 1(1-2):17Google Scholar
  229. Nierengarten MB (2004) Anti-Signal Recognition Particle Autoantibody Not Specific Only For Polymyositis. Arthritis Rheum 50:209-215CrossRefGoogle Scholar
  230. Genth E (2005) Inflammatory muscle diseases: Dermatomyositis, polymyositis, and inclusion body myositis. Internist (Berl) 46:1218-1232CrossRefGoogle Scholar
  231. Hengstman GJD, Laak HJ ter, Vree Egberts WTM, Lundberg IE, Moutsopoulos HM, Vencovsky J, Doria A, Mosca M, Venrooij WJ van, Engelen BGM van (2006) Anti-SRP autoantibodies, marker of a necrotizing myopathy. Ann Rheum Dis. 65(12):1635-1638PubMedCrossRefGoogle Scholar
  232. Yoshifuji H, Fujii T, Kobayashi S, Imura Y, Fujita Y, Kawabata D, Usui T, Tanaka M, Nagai S, Umehara H, Mimori T (2006) Anti-aminoacyltRNA synthetase antibodies in clinical course prediction of interstitial lung disease complicated with idiopathic inflammatory myopathies. Autoimmunity 39:233-241PubMedCrossRefGoogle Scholar
  233. Sato S, Kuwana M, Hirakata M (2007) Clinical characteristics of Japanese patients with anti-OJ (anti-isoleucyl-tRNA synthetase) autoantibodies. Rheumatology (Oxford)46(5):842-845PubMedCrossRefGoogle Scholar
  234. Meyer W, Scheper T, Janssen A, Torkler S, Schlumberger W, Stöcker W. (2007) „EUROLINE Myositis-Profil“: Ein neu entwickelter Linienblot zum Nachweis Myositis-assoziierter Autoantikörper. Z Rheumatol 66:98CrossRefGoogle Scholar
  235. Mimori T, Imura Y, Nakashima R, Yoshifuji H (2007) Autoantibodies in idiopathic inflammatory myopathy: An update on clinical and pathophysiological significance. Curr Opin Rheumatol 19:523-529PubMedCrossRefGoogle Scholar
  236. Targoff IN (2008) Autoantibodies and their significance in myositis. Curr Rheumatol Rep Aug;10(4):333-340CrossRefGoogle Scholar
  237. Hanke K, Brückner C, Dähnrich C, Huscher D, Komorowski L, Meyer W, Janssen A, Backhaus M, Becker M, Kill A, Egerer K, Burmester G, Hiepe F, Schlumberger W, Riemekasten G (2009) Antibodies against PM/Scl-75 and PM/Scl-100 are independent markers for different subsets of systemic sclerosis patients. Arthritis Research & Therapy 11:R22CrossRefGoogle Scholar
  238. Gunawardena H, Betteridge ZE, McHugh NJ (2009) Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) Jun;48(6):607-612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Axel M. Gressner
    • 1
  • Torsten Arndt
    • 2
    • 3
  1. 1.laboratoriumsmedizin kölnDres. med. Wisplinghoff und KollegenKöln
  2. 2.Institut für Medizinische Diagnostik GmbHBioscientiaIngelheim
  3. 3.Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik Standort MarburgUniversitätsklinikum Gießen und Marburg GmbHMarburg

Personalised recommendations