Audio-Visual Fusion for Detecting Violent Scenes in Videos

  • Theodoros Giannakopoulos
  • Alexandros Makris
  • Dimitrios Kosmopoulos
  • Stavros Perantonis
  • Sergios Theodoridis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6040)

Abstract

In this paper we present our research towards the detection of violent scenes in movies, employing fusion methodologies, based on learning. Towards this goal, a multi-step approach is followed: initially, automated auditory and visual processing and analysis is performed in order to estimate probabilistic measures regarding particular audio and visual related classes. At a second stage, a meta-classification architecture is adopted, which combines the audio and visual information, in order to classify mid-term video segments as “violent” or “non-violent”. The proposed scheme has been evaluated on a real dataset from 10 films.

Keywords

Violence detection multi-modal video classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, A., Shah, M., da Vitoria Lobo, N.: Person-on-person violence detection in video data. In: ICPR, vol. 1, pp. 433–438 (2002)Google Scholar
  2. 2.
    Zajdel, W., Krijnders, J., Andringa, T., Gavrila, D.: Cassandra: audio-video sensor fusion for aggression detection, pp. 200–205 (2007)Google Scholar
  3. 3.
    Vasconcelos, N., Lippman, A.: Towards semantically meaningful feature spaces for the characterization of video content. In: ICIP 1997: Proceedings of the 1997 International Conference on Image Processing (ICIP 1997), Washington, DC, USA, 3-Volume Set-Volume 1, p. 25. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  4. 4.
    Nam, J., Alghoniemy, M., Tewfik, A.H.: Audio-visual content-based violent scene characterization. In: ICIP(1), pp. 353–357 (1998)Google Scholar
  5. 5.
    Vasconcelos, N., Lippman, A.: Towards semantically meaningful feature spaces for the characterization of video content. In: International Conference on Image Processing, pp. 25–28 (1997)Google Scholar
  6. 6.
    Datta, A., Shah, M., Lobo, N.V.: Person-on-person violence detection in video data. In: IEEE International Conference on Pattern Recognition, Canada (2002)Google Scholar
  7. 7.
    Nam, J., Tewfik, A.H.: Event-driven video abstraction and visualization. Multimedia Tools Appl. 16(1-2), 55–77 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Rasheed, Z., Shah, M.: Movie genre classification by exploiting audio-visual features of previews. In: Proceedings 16th International Conference on Pattern Recognition, pp. 1086–1089 (2002)Google Scholar
  9. 9.
    Giannakopoulos, T., Kosmopoulos, D., Aristidou, A., Theodoridis, S.: Violence content classification using audio features. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 502–507. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Giannakopoulos, T., Pikrakis, A., Theodoridis, S.: A multi-class audio classification method with respect to violent content in movies, using bayesian networks. In: IEEE International Workshop on Multimedia Signal Processing, MMSP 2007 (2007)Google Scholar
  11. 11.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)MathSciNetGoogle Scholar
  12. 12.
    Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: ICIP(1), pp. 900–903 (2002)Google Scholar
  13. 13.
    Makris, A., Kosmopoulos, D., Perantonis, S., Theodoridis, S.: Hierarchical feature fusion for visual tracking. In: IEEE International Conference on Image Processing 2007, September 16 -October 19, vol. 6, pp. VI –289–VI –292 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Theodoros Giannakopoulos
    • 1
  • Alexandros Makris
    • 1
  • Dimitrios Kosmopoulos
    • 1
  • Stavros Perantonis
    • 1
  • Sergios Theodoridis
    • 2
  1. 1.Computational Intelligence Laboratory, Institute of Informatics and TelecommunicationsNational Center of Scientific Research DemokritosGreece
  2. 2.Department of Informatics and TelecommunicationsUniversity of AthensGreece

Personalised recommendations