Improving 3D Visual Experience by Controlling the Perceived Depth Distortion

  • Jessica Prévoteau
  • Sylvia Chalençon-Piotin
  • Didier Debons
  • Laurent Lucas
  • Yannick Remion
Part of the Signals and Communication Technology book series (SCT)

Abstract

A fundamental element of stereoscopic and/or autostereoscopic image production is the geometrical analysis of shooting and viewing conditions in order to obtain a qualitative 3D perception experience. Starting from the usual multiscopic rendering geometry and the classical off-axis coplanar multipoint 3D shooting geometry, we firstly compare the perceived depth with the shot scene depth, for a couple of shooting and rendering devices. This yields a depth distortion model whose parameters are expressed from the geometrical characteristics of shooting and rendering devices. Then, we explain how to invert these expressions in order to design the appropriate shooting layout from a chosen rendering device and a desired effect of depth. Thus, thanks to our scientific know-how, we based our work on the link between the shooting and rendering geometries, which enables to control the distortion of the perceived depth. Finally, thanks to our technological expertise, this design scheme provides three patented shooting technologies producing qualitative 3D content for various kinds of scenes (real or virtual, still or animated), complying with any pre-chosen distortion when rendered on any specific multiscopic technology and device as specified previously.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanders, W.R., McAllister, D.F.: Producing anaglyphs from synthetic images. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems X, Santa Clara, CA, USA (2003)Google Scholar
  2. 2.
    Dubois, E.: A projection method to generate anaglyph stereo images. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Processing, Salt Lake City, UT, USA (2001)Google Scholar
  3. 3.
    Blach, R., Bues, M., Hochstrate, J., Springer, J., Fröhlich, B.: Experiences with Multi-Viewer Stereo Displays Based on LC-Shutters and Polarization. In: IEEE VR Workshop Emerging Display Technologies, Bonn, Germany (2005)Google Scholar
  4. 4.
    Perlin, K., Paxia, S., Kollin, J.S.: An autostereoscopic display. In: SIGGRAPH 2000 Proceedings of the 27th annual conference on Computer graphics and interactive techniques, New York, NY, USA (2000)Google Scholar
  5. 5.
    Dodgson, N.A.: Analysis of the viewing zone of multi-view autostereoscopic displays. In: Proc. SPIE Stereoscopic Displays and Applications XIII, San Jose, California, USA (2002)Google Scholar
  6. 6.
    Müller, K., Smolic, A., Dix, K., Merkle, P., Kauff, P., Wiegand, T.: View Synthesis for Advanced 3D Video Systems. EURASIP Journal on Image and Video Processing (2008)Google Scholar
  7. 7.
    Güdükbay, U., Yi̇lmaz, T.: Stereoscopic View-Dependent Visualization of Terrain Height Fields. IEEE Transactions on Visualization and Computer Graphics 8(4), 330–345 (2002)CrossRefGoogle Scholar
  8. 8.
    Yilmaz, T., Gudukbay, U.: Stereoscopic urban visualization based on graphics processor unit. SPIE: Optical Engineering 47(9), 097005 (2008)Google Scholar
  9. 9.
    Sheng, F., Hujun, B., Qunsheng, P.: An accelerated rendering algorithm for stereoscopic display. Computers & graphics 20(2), 223–229 (1996)CrossRefGoogle Scholar
  10. 10.
    Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001)MATHGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  12. 12.
    Jones, G.R., Lee, D., Holliman, N.S., Ezra, D.: Controlling Perceived Depth in Stereoscopic Images. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems VIII, San Jose, CA, USA (2001)Google Scholar
  13. 13.
    Held, R.T., Banks, M.S.: Misperceptions in stereoscopic displays: a vision science perspective. In: APGV 2008 Proceedings of the 5th symposium on Applied perception in graphics and visualization, Los Angeles, CA, USA (2008)Google Scholar
  14. 14.
    Woods, A.J., Docherty, T., Koch, R.: Image distortions in stereoscopic video systems. In: Proc. SPIE Stereoscopic Displays and Applications IV, San Jose, CA, USA (1993)Google Scholar
  15. 15.
    Wöpking, M.: Viewing comfort with stereoscopic pictures: An experimental study on the subjective effects of disparity magnitude and depth of focus. Journal of the Society for Information Display 3(3), 101–103 (1995)CrossRefGoogle Scholar
  16. 16.
    Yeh, Y.Y., Silverstein, L.D.: Using electronic stereoscopic color displays: limits of fusion and depth discrimination. In: Proc. SPIE Three-Dimensional Visualization and Display Technologies (1989)Google Scholar
  17. 17.
    Peinsipp-Byma, E., Rehfeld, N., Eck, R.: Evaluation of stereoscopic 3D displays for image analysis tasks. In: Proc. SPIE Stereoscopic Displays and Applications XX, San Jose, CA, USA (2009)Google Scholar
  18. 18.
    Hill, A.J.: A Mathematical and Experimental Foundation for Stereoscopic Photography. SMPTE journal (1953)Google Scholar
  19. 19.
    Son, J.Y., Gruts, Y.N., Kwack, K.D., Cha, K.H., Kim, S.K.: Stereoscopic image distortion in radial camera and projector configurations. Journal of the Optical Society of America A 24(3), 643–650 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Yamanoue, H.: The relation between size distortion and shooting conditions for stereoscopic images. SMPTE journal 106(4), 225–232 (1997)Google Scholar
  21. 21.
    Yamanoue, H.: The Differences Between Toed-in Camera Configurations and Parallel Camera Configurations in Shooting Stereoscopic Images. In: IEEE International Conference on Multimedia and Expo., pp. 1701–1704 (2006)Google Scholar
  22. 22.
    Dodgson, N.A., Moore, J.R., Lan, S.R.: Time-multiplexed autostereoscopic camera system. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems IV, San Jose, CA, USA (1997)Google Scholar
  23. 23.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  24. 24.
    Musée Automobile Reims Champagne, http://www.musee-automobile-reims-champagne.com/ (accessed October 29, 2009)
  25. 25.
    Niquin, C., Prévost, S., Remion, Y.: Accurate multi-view depth reconstruction with occlusions handling. In: 3DTV-Conference 2009 The True Vision - Capture, Transmission and Display of 3D Video, Postdam, Germany (2009)Google Scholar
  26. 26.
    Palais du Tau, http://palais-tau.monuments-nationaux.fr/ (accessed October 29, 2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jessica Prévoteau
    • 1
    • 2
  • Sylvia Chalençon-Piotin
    • 2
  • Didier Debons
    • 1
  • Laurent Lucas
    • 1
    • 2
  • Yannick Remion
    • 1
    • 2
  1. 1.TéléReliefReimsFrance
  2. 2.CReSTIC-SIC EA3804, rue des CrayèresReims Cedex 2France

Personalised recommendations