Post-processing Altimeter Data Towards Coastal Applications and Integration into Coastal Models

  • L. RoblouEmail author
  • J. Lamouroux
  • J. Bouffard
  • F. Lyard
  • M. Le Hénaff
  • A. Lombard
  • P. Marsaleix
  • P. De Mey
  • F. Birol


Altimetry missions in the last 16 years (TOPEX/Poseidon, ERS-1/2, GFO, Jason-1 and ENVISAT) and the recently-launched Jason-2 mission have resulted in great advances in deep ocean research and operational oceanography. However, oceanographic applications using satellite altimeter data have become very challenging over regions extending from near-shore to the continental shelf and slope (Cipollini et al. 2008). In these regions, intrinsic difficulties in the corrections (e.g., the high frequency ocean response to tidal and atmospheric loading, the mean sea level, etc.) and issues of land contamination in the radar altimeter and radiometer footprints result in systematic flagging and rejection of these data. Forthcoming altimeter missions (SARAL/AltiKa, SWOT, Sentinel-3, etc.) are designed to be better-suited for use in the coastal ocean. However, a number of studies have dealt with the problem of re-analysing, improving and exploiting the existing archive to monitor coastal dynamics. The early encouraging results (Vignudelli et al. 2005; Bouffard et al. 2008, Birol et al. submitted J Mar Syst 2009) support the need for continued research in coastal altimetry, with the opportunity of providing input and recommendations for future missions.

This chapter reviews the current status of the X-TRACK processing application (Roblou et al. 2007), whose objectives are to improve both the quantity and quality of altimeter sea surface height (SSH) estimates in coastal regions by reprocessing a posteriori (the standard Geophysical Data Records) (GDR) as delivered by operational centres, i.e. by improving the post-processing stage. Latest improvements on along-track spatial resolution (high rate data streams and removal of large-scale errors) that promise improved monitoring of coastal dynamics are also detailed. In addition, with a view to integrating coastal-oriented altimeter datasets into models for coastal ocean state analysis, methodologies for matching models with observations are discussed.


Coastal altimetry Data correction retrieval Data editing Post-processing Regional de-aliasing Synergy with coastal models 



ALtimeter-Based Investigations in COrsica, Capraia and Contiguous Areas


Agenzia Spaziale Italiana


Archivage, Validation et Interprétation des données des Satellites Océanographiques


Collecte Localisation Satellites


Centre National d’Études Spatiales


ESA development of COASTal ALTimetry


Centre de Topographie des Océans et de l’Hydrosphère


Data Unification and Altimeter Combination System


ENVIronmental SATellite


European Space Agency


European Union


Finite Element Solution


Geophysical data record


GEodetic & Oceanographic SATellite


GEOSAT Follow-On


Global Monitoring for Environment and Security


Gravity field and steady-state Ocean Circulation Explorer


Global Ocean Data Assimilation Experiment


Global Ocean Tide


Inverted Barometer


Integrated Marine Biogeochemistry and Ecosystem Research


Laboratoire d’Aérologie


Laboratoire d’Études en Géophysique et Océanographie Spatiales




Large-scale error reduction


MARgin INtegrated Approach


Mean dynamic topography


Marine Environment and Security for the European Area


Mediterranean Forecasting System Toward Environmental Prediction


Modèle d’Ondes de Gravité 2D


Mean Sea Surface


North-Western MEDiterranean


Ocean General Circulation Model


Ocean Surface Topography Science Team


Prototype Innovant de Système de Traitement pour l’Altimétrie Côtière et l’Hydrologie


Satellite with ARgos and ALtika


Sea Level Anomaly


Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de locali-sation précise


Sea Surface Height


Sea Surface Temperature


Singular Value Decomposition


Surface Water and Ocean Topography


TOPography EXperiment


Terre, Ocean, Surfaces Continentales, Atmosphère


Toulouse Unstructured Grid Ocean Model


United Nations Educational, Scientific and Cultural Organization



The authors would like to thank the entire staff at the Centre de Topographie des Océans et de l’Hydrosphère (CTOH) at LEGOS for access to the altimeter data bases ( and its expertise. This paper was significantly improved by comments from Rosemary Morrow. Very special thanks are due to Stefano Vignudelli and Paolo Cipollini for strong interactions on the coastal altimetry issue since the ALBICOCCA project. The ALBICOCCA project was funded by CNES in the framework of TOSCA programme and ASI. The SYMPHONIE model data come from the outcome of the MFSTEP project, funded by the European Commission 5th Framework Programme on Energy, Environment and Sustainable Development (EU contract number EVK3-CT-2002-00075). This work has been partially carried out in the framework of the “GOCE Gravity Improvement of Continental Slope and Shelf Ocean Circulation Modelling” study, funded by the European Space Agency (ESA contract number 19740/06/NL/HE). This work was carried out as a contribution to the MARINA (MARgin INtegrated Approach) project, funded by CNES in the framework of the Ocean Surface Topography Science Team investigation plan (CNES/EUMETSAT/NASA/NOAA).

In addition, the authors would like to honour the warmth and kind guidance of a pioneer, colleague and friend, Dr. Yves Ménard. This chapter is dedicated to his memory.


  1. Andersen OB (1999) Shallow water tides on the northwest European shelf from TOPEX/POSEIDON altimetry. J Geophys Res 104:7729–7741CrossRefGoogle Scholar
  2. Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth, Part A: Solid Earth Geodesy 25(1): pp 17–24Google Scholar
  3. Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res 107(C12):8013Google Scholar
  4. Anzenhofer M, Shum CK, Rentsh M (1999) Coastal altimetry and applications, Tech. Rep. n. 464, Geodetic Science and Surveying, The Ohio State University, Columbus, USAGoogle Scholar
  5. Arakawa A, Suarez MJ (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon Wea Rev 111:34–45CrossRefGoogle Scholar
  6. Archiving, Validation, and Interpretation of Satellite Oceanographic Data (AVISO) (1996) In: Aviso Handbook for Merged TOPEX/Poseidon products, 3rd edn. Toulouse, FranceGoogle Scholar
  7. Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32(16):1–4CrossRefGoogle Scholar
  8. Birol F, Cancet M, Estournel C (2010) Aspects of the seasonal variability of the Northern Current (NW Mediterranean Sea) observed by altimetry. J Mar Syst 81(4):297–311Google Scholar
  9. Bouffard J, Roblou L, Ménard Y, Marsaleix P, De Mey P (2006) Observing the ocean variability in the western Mediterranean Sea by using coastal multi-satellite data and models. In: Proceedings of the Symposium on 15 years of Progress on Radar Altimetry, March 13–18, 2006, ESA SP-614, July 2006Google Scholar
  10. Bouffard J, Vignudelli S, Herrmann M, Lyard F, Marsaleix P, Ménard Y, Cipollini P (2008a) Comparison of ocean dynamics with a regional circulation model and improved altimetry in the Northwestern Mediterranean. Terr Atmos Ocean Sci 19:117–133CrossRefGoogle Scholar
  11. Bouffard J, Vignudelli S, Cipollini P, Ménard Y (2008b) Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophys Res Lett 35:L10601CrossRefGoogle Scholar
  12. Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25:67–74CrossRefGoogle Scholar
  13. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys Res Lett 30(6):1275. doi: 10.1029/2002GL016473 CrossRefGoogle Scholar
  14. Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res 110:C09006CrossRefGoogle Scholar
  15. Chelton DB (2001) Report of the High-Resolution Ocean Topography Science Working Group Meeting, Oregon StateGoogle Scholar
  16. Chelton DB, deSzoeke RA, Schlax MG, Naggar KE, Siwertz N (1998) Geographical variability of the first baroclinic Rossby Radius of deformation. J Phys Oceanogr 28:433–460CrossRefGoogle Scholar
  17. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry. In: Fu L, Cazenave A (eds) Satellite altimetry and earth sciences, Int. Geophys. Ser., vol. 69. Elsevier, New York, pp 1–131Google Scholar
  18. Church JA, Godfrey JS, Jackett DR, Mc-Dougall TJ (1991) A model of sea level rise caused by ocean thermal expansion. J Clim 4:438–444CrossRefGoogle Scholar
  19. Cipollini P, Gomez-Enri J, Gommenginger C, Martin-Puig C, Vignudelli S, Woodworth P, Benveniste J (2008a) Developing radar altimetry in the oceanic coastal zone: the COASTALT project. In: paper presented at General Assembly 2008, European Geoscience Union, Vienna, April 17–18Google Scholar
  20. Cipollini P, Vignudelli S, Lyard F, Roblou L (2008b) 15 years of altimetry at various scales over the Mediterranean. In: Vittorio Barale (JRC Ispra) and Martin Gade (Universitat Amburgo) (eds) Remote sensing of European Seas. Springer, Heidelberg/Germany, pp 295–306Google Scholar
  21. Coppens D, Bijac S, Prunet P, Jeansou E (2007) Improvement of sea surface brightness temperature retrieval in coastal areas for the estimation of the wet tropospheric path delay. In: Paper presented at the Ocean Surface Topography Science Team meeting, Hobart, AustraliaGoogle Scholar
  22. Deng XL, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res. doi: 10.1029/2005JC003039 Google Scholar
  23. Desportes C, Obligis E, Eymard L (2007) On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans Geosci Remote Sensing 45(7):2139–2149CrossRefGoogle Scholar
  24. Dufau-Julliand C, Marsaleix P, Petrenko A, Dekeyser I (2004) Three-dimensional modelling of the Gulf of Lion’s hydrodynamics (northwest Mediterranean) during January 1999 (MOOGLI3 Experiment) and late winter 1999: Western Mediterranean Intermediate Water’s (WIW’s) formation and its cascading over the shelf break. J Geophys Res. doi: 10.1029/2003JC002019 Google Scholar
  25. Durand F, Shankar D, Birol F, Shenoi SSC (2008) Estimating boundary currents from satellite altimetry: a case study for the east coast of India. J Oceanogr 64:831–845CrossRefGoogle Scholar
  26. Estournel C, Kondrachoff V, Marsaleix P, Vehil R (1997) The plume of the Rhône: numerical simulation and remote sensing. Cont Shelf Res 17:899–924CrossRefGoogle Scholar
  27. Estournel C, Durrieu de Madron X, Marsaleix P, Auclair F, Julliand C, Vehil R (2003) Observation and modelisation of the winter coastal oceanic circulation in the Gulf of Lions under wind conditions influenced by the continental orography (FETCH experiment). J Geophys Res 108(C3):1–18Google Scholar
  28. Estournel C, Auclair F, Lux M, Nguyen C, Marsaleix P (2007) “Scale Oriented” embedded modelling of the North-Western Mediterranean in the frame of MFSTEP. Ocean Sci Discuss 4:145–187CrossRefGoogle Scholar
  29. Fernandes MJ, Bastos L, Antunes M (2003) Coastal satellite altimetry – methods for data recovery and validation. In: Tziavo IN (ed) Proceedings of the 3rd Meeting of the International Gravity & Geoid Commission (GG2002), Editions ZITI, pp 302–307Google Scholar
  30. Fernandes MJ, Bastos L, Antunes M (2003) Coastal satellite altimetry – methods for data recovery and validation. In: Tziavo IN (ed) Proceedings of the 3rd meeting of the International Gravity & Geoid Commission (GG2002), Editions ZITI, pp 302–307Google Scholar
  31. Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Int Geophys Ser, vol 69. Elsevier, New YorkGoogle Scholar
  32. Gaspar P, Ponte RM (1997) Relation between sea level and barometric pressure determined from altimeter data and model simulations. J Geophys Res 102(C1):961–971Google Scholar
  33. Gatti J, Petrenko A, Devenon JL, Leredde Y, Ulses C (2006) The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Cont Shelf Res 26:1794–1805CrossRefGoogle Scholar
  34. Gregory JM (1993) Sea level changes under increasing atmospheric CO2 in a transient coupled ocean-atmosphere GCM experiment. J Clim 6(12):2247–2262CrossRefGoogle Scholar
  35. Greatbatch RJ (1994) A note on the representation of steric sea levels in models that conserve volume rather than mass. J Geophys Res 99(12):767–771Google Scholar
  36. Guizien K, Brochier T, Duchène JC, Koh BS, Marsaleix P (2006) Dispersal of owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar Ecol Prog Ser 311:47–66CrossRefGoogle Scholar
  37. Han G, Tang CL, Smith PC (2002) Annual variations of sea surface elevation and currents over the Scotian Shelf and Slope. J Phys Ocean 32:1794–1819CrossRefGoogle Scholar
  38. Herrmann M, Somot S, Sevault F, Estournel C, Déqué M (2008) Modelling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: case study of winter 1986–1987. J Geophys Res. doi: 10.1029/2006JC003991 Google Scholar
  39. Hernandez F, Calvez MH, Dorandeu J, Faugère Y, Mertz F, Schaeffer P (2000) Surface Moyenne Océanique: Support scientifique à la mission altimétrique Jason-1, et à une mission micro-satellite altimétrique. Contrat Ssalto 2945 – Lot 2 – A.1. Rapport d’avancement. Rapport n° CLS/DOS/NT/00.313, published by CLS, Ramonville St Agne, pp 40Google Scholar
  40. Hirose N, Fukumori I, Zlotnicki V (2001) Modelling the high frequency barotropic response of the ocean to atmospheric disturbances: sensitivity to forcing, topography and friction. J Geophys Res 106(C12):30987–30995Google Scholar
  41. Ishii M, Kimoto M, Sakamoto K, Iwasaki SI (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62(2):155–170CrossRefGoogle Scholar
  42. Jan G, Ménard Y, Faillot M, Lyard F, Jeansou E, Bonnefond P (2004) Offshore absolute calibration of space borne radar altimeters. Mar Geod. Special issue on Jason-1 calibration/validation, Part 3, 27:3–4, 615–629Google Scholar
  43. Jorda G, Comerma E, Bolaños R, Espino M (2007) Impact of forcing errors in the CAMCAT oil spill forecasting system. A sensitivity study. J Mar Syst 65:134–157CrossRefGoogle Scholar
  44. Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930CrossRefGoogle Scholar
  45. Labroue S, Gaspar P, Dorandeu J, Zanifé OZ, Mertz F, Vincent P, Choquet P (2004) Non parametric of the sea states bias for Jason 1 radar altimeter. Mar Geod 27:453–481CrossRefGoogle Scholar
  46. Lambin J, Lombard A, Picot N (2008) CNES initiative for altimeter processing in coastal zone: PISTACH. In: Paper presented at the First altimeter workshop, Silver Spring, MD, February 5–7Google Scholar
  47. Le Hénaff M, Roblou L, Bouffard J (2010) Characterizing the Navidad Current interannual variability using coastal altimetry. Ocean Dyn (in press)Google Scholar
  48. Le Provost C (2001) Ocean tides. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences: a handbook of techniques and applications. Int Geophys Ser, vol 69. Academic, San Diego, CA, pp 267–303Google Scholar
  49. Le Traon PY, Ogor F (1998) ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2cm challenge. J Geophys Res 103:8045–8057CrossRefGoogle Scholar
  50. Lombard A, Cazenave A, Le Traon PY, Guinehut S, Cabanes C (2006) Perspectives on present day sea level change: a tribute to Christian Le Provost. Ocean Dyn 56:445–451CrossRefGoogle Scholar
  51. Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a ¼° global ocean/sea-ice hindcast. Ocean Dyn. doi: 10.1007/s10236-008-0161-6 Google Scholar
  52. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. doi: 10.1007/s10236-006-0086-x Google Scholar
  53. Lyard F, Roblou L, Mangiarotti S, Marsaleix P (2003) En route to coastal oceanography from altimetric data: some ALBICOCCA project insight. In: Paper presented at the Ocean surface topography science team meeting, Arles, FranceGoogle Scholar
  54. Lyard F, Roblou L (2009) Robust methods for high accuracy tidal modelling in coastal and shelf seas. In: Paper presented at the Ocean Surface Topography Science Team meeting, Seattle, Washington, DC, USAGoogle Scholar
  55. Lyard F, Roblou L, De Mey P, Lamouroux J (2009) Ocean high frequency dynamics at global and regional scales. In: Paper presented at the first SARAL/AltiKa scientific workshop, Ahmedabad, IndiaGoogle Scholar
  56. Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7:207–228CrossRefGoogle Scholar
  57. Mangiarotti S, Lyard F (2008) Surface pressure and wind stress effects on sea level change estimations from TOPEX/Poseidon satellite altimetry in the Mediterranean Sea. J Atmos Ocean Technol 25:464–474CrossRefGoogle Scholar
  58. Mantripp D (1996) Radar altimetry. In: Fancey NE, Gardiner ID, Vaughan RA (eds) The determination of geophysical parameters from space. Scottish Universities Summer School in Physics and Institute of Physics Publishing, Bristol/PhiladelphiaGoogle Scholar
  59. Manzella GMR, Borzelli GL, Cipollini P, Guymer TH, Snaith HM, Vignudelli S (1997) Potential use of satellite data to infer the circulation dynamics in a marginal area of the Mediterranean Sea. In: Proceedings of 3rd ERS Symposium – Space at the Service of our Environment, Florence (Italy), 17–21 March 1997, Vol 3, pp 1461–1466, European Space Agency Special Publication ESA SP-414Google Scholar
  60. Manzella GMR, Borzelli GL, Cipollini P, Guymer TH, Snaith HM, Vignudelli S (1997) Potential use of satellite data to infer the circulation dynamics in a marginal area of the Mediterranean Sea. In: Proceedings of 3rd ERS symposium – space at the service of our environment, Florence (Italy), 17–21 March 1997, vol 3, pp 1461–1466, European Space Agency Special Publication ESA SP-414Google Scholar
  61. Maraldi C, Galton-Fenzi B, Lyard F, Testut L, Coleman R (2007) Barotropic tides of the Southern Indian Ocean and the Amery Ice Shelf cavity. Geophys Res Lett. doi: 10.1029/2007GL030900 Google Scholar
  62. Marsaleix P, Auclair F, Estournel C (2006) Considerations on open boundary conditions for regional and coastal ocean models. J Atmos Ocean Technol 23:1604–1613CrossRefGoogle Scholar
  63. Marsaleix P, Auclair F, Floor JW, Herrmann MJ, Estournel C, Pairaud I, Ulses C (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20:61–89CrossRefGoogle Scholar
  64. Millot C (1987) Mesoscale and seasonal variabilities of circulation in western Mediterranean. Dyn Atmos Ocean 15:179–214CrossRefGoogle Scholar
  65. Millot C (1991) Circulation in the western Mediterranean. Oceanol Acta 10:143–149Google Scholar
  66. Morrow R, Valladeau G, Sallee JB (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77(4):351–366. A new view of water masses after WOCE. A special edition for Professor Matthias TomczakGoogle Scholar
  67. Ollivier A, Le Bihan N, Lacoume JL, Zanife OZ (2005) Improving speckle filtering with SVD to extract ocean parameters from altimetry radar echos. In: Proceeding of PSIP 2005, ToulouseGoogle Scholar
  68. Pairaud I, Lyard L, Auclair F, Letellier T, Marsaleix P (2008) Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 1: barotropic tides. Cont Shelf Res. doi:10.1016/j.csr.2008.03.004Google Scholar
  69. Pascual A, Faugère Y, Larnicol G, Le Traon PY (2006) Improved description of the mesoscale variability by combining four satellite altimeters. J Geophys Res. doi: 10.1029/2005GL024633 Google Scholar
  70. Pattullo J, Munk W, Revelle R, Strong E (1955) The seasonal oscillation in sea level. J Mar Res 14:88–156Google Scholar
  71. Petrenko A, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: in-situ and modelling data. Cont Shelf Res 25:7–27CrossRefGoogle Scholar
  72. Quesney A, Jeansou E, Lambin J, Picot N (2007) A new altimeter waveform retracking algorithm based on neural networks. In: Paper presented at the Ocean surface topography science team meeting, Hobart, AustraliaGoogle Scholar
  73. Roblou L (2004) Validation des solutions de marée en Mer Méditerranée: comparaisons aux observations. Technical Report, POC-TR-02-04, 67pp, Pôle d’Océanographie Côtière, Toulouse, FranceGoogle Scholar
  74. Roblou L, Lyard F, Le Hénaff M, Maraldi C (2007) X-TRACK, a new processing tool for altimetry in coastal ocean. In: ESA ENVISAT Symposium, Montreux, Switzerland, April 23–27, 2007, ESA SP-636, July 2007Google Scholar
  75. Ruf CS, Keihm SJ, Subramanya B, Janssen MA (1994) TOPEX/Poseidon microwave radiometer performance and in-flight calibration. J Geophys Res 99(C12):24915–24926Google Scholar
  76. Service d’Altimétrie et de Localisation Précise (SALP) (1996) Minutes of the ocean surface topography science team meeting, Venice, Italy, March 16–18, 2006, SALP-CR-MA-EA-15640-CNES, Y. Ménard (ed), CNES, p 90Google Scholar
  77. Stammer D, Wunsch C, Ponte RM (2000) De-aliasing of global high frequency barotropic motions in altimeter observations. Geophys Res Lett 27(8):1175–1178CrossRefGoogle Scholar
  78. Tai CK (1989) Accuracy assessment of widely used orbit error approximations in satellite altimetry. J Atmos Ocean Technol 6:147–150CrossRefGoogle Scholar
  79. Tai CK (1991) How to observe the gyre to global-scale variability in satellite altimetry: signal attenuation by orbit error removal. J Atmos Ocean Technol 8:271–288CrossRefGoogle Scholar
  80. Tournadre J (2006) Improved level-3 oceanic rainfall retrieval from dual-frequency spaceborne radar altimeter systems. J Atmos Ocean Technol. doi: 10.1175/JTECH1897.1 Google Scholar
  81. Tomczak M, Godfrey JS (1994) Regional oceanography: an introduction. Pergamon, New YorkGoogle Scholar
  82. Ulses C, Grenz C, Marsaleix P, Schaaff E, Estournel C, Meulé S, Pinazo C (2005) Circulation in a semi enclosed bay under the influence of strong fresh water input. J Mar Syst 56:113–132CrossRefGoogle Scholar
  83. UNESCO, ICES, SCOR, IAPSO (1981) Background papers and supporting data on the international equation of state of seawater, 1980, UNESCO technical papers in Mar Science. Nr. 38, UNESCOGoogle Scholar
  84. Vignudelli S, Cipollini P, Astraldi M, Gasparini GP, Manzella GMR (2000) Integrated use of altimeter and in situ data for understanding the water exchanges between the Tyrrhenian and Ligurian Seas. J Geophys Res 105(19):649–663Google Scholar
  85. Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini GP, Manzella G, Astraldi M (2005) Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea). Geophys Res Lett. doi: 10.1029/2005GL022602 Google Scholar
  86. Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J Geophys Res. doi: 10.1029/2006JC003765 Google Scholar
  87. Wunsch C, Ponte R, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5911CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • L. Roblou
    • 1
    • 2
    Email author
  • J. Lamouroux
    • 4
  • J. Bouffard
    • 5
  • F. Lyard
    • 1
    • 2
  • M. Le Hénaff
    • 1
    • 2
  • A. Lombard
    • 6
  • P. Marsaleix
    • 1
    • 2
    • 3
  • P. De Mey
    • 1
    • 2
  • F. Birol
    • 1
    • 2
  1. 1.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), UPS (OMP-PCA)Université de ToulouseToulouseFrance
  2. 2.LEGOSCNRSToulouseFrance
  3. 3.Laboratoire d’Aérologie (LA)CNRSToulouseFrance
  4. 4.NOVELTIS SARamonville-Saint-AgneFrance
  5. 5.Institut Mediterrani d’Estudis AvançatsEsporlesSpain
  6. 6.Centre National d’Études Spatiales (CNES)ToulouseFrance

Personalised recommendations