Advertisement

From Research to Operations: The USDA Global Reservoir and Lake Monitor

  • C. BirkettEmail author
  • C. Reynolds
  • B. Beckley
  • B. Doorn

Abstract

The Global Reservoir and Lake Monitor (GRLM) records variations in surface water height for approximately 70 lakes and reservoirs worldwide using a combination of satellite radar altimetry data sets. The project was initiated by the U.S. Department of Agriculture’s (USDA) Foreign Agricultural Service (FAS) in cooperation with the National Aeronautic and Space Administration’s (NASA) Goddard Space Flight Center (GSFC) and the University of Maryland (UMD). On-line since the end of 2003, the program focuses on the delivery of near-real-time products within an operational framework and exists within the USDA’s decision support system (DSS) through the larger cooperative USDA/NASA Global Agricultural Monitoring (GLAM) program. Currently, near-real-time products are derived from the NASA/Centre National d’Etudes Spatiales (CNES) Jason-1 mission (post-2002) with archival products derived from the NASA/CNES TOPEX/Poseidon mission (1992–2002) and the US Naval Research Lab’s (NRL) Geosat follow-on (GFO) mission (2000–2008). Validation exercises show that the products vary in accuracy from a few centimeters RMS (root mean square) to several tens of centimeters RMS depending on the target size and surface wave conditions. On a weekly basis, new satellite data are retrieved and products updated. Output is in the form of graphs and text files with web links to other imaging and information resources. The next phase of the program sees an expansion to over 500 lakes and reservoirs via the incorporation of products derived from the European Space Agency (ESA) remote sensing satellites (ERS-1 and ERS-2, 1992–2008) and the ESA environmental satellite ENVISAT (post-2002). Near-real-time products will also be continued via data from the follow-on Jason-2 mission (post-2009). The USDA/FAS utilize the products for irrigation potential considerations and as general indicators of drought and high-water conditions. The monitoring system thus has relevance to water resources management and agriculture efficiency at both the national and international level.

Keywords

Lakes Reservoirs Satellite radar altimetry Surface water level 

Abbreviations

ALT

NASA Radar Altimeter

AVISO

Archiving, Validation and Interpretation of Satellite Oceanographic data

CNES

Centre National d’Études Spatiales

CSR

Center for Space Research (University of Texas, Austin)

DDP

Defect Detection and Prevention

DESDynI

Deformation, Ecosystem Structure and Dynamics of Ice

DORIS

Doppler Orbit Determination Radiopositioning Integrated on Satellite

DSS

Decision Support System

Envisat

Environmental Satellite

ERS

European Remote Sensing Satellite

ESA

European Space Agency

ESRI

Environmental Systems Research Institute

EUMETSAT

European Org. for the Exploitation of Meteorological Satellites

FAS

Foreign Agricultural Service

FEWS

Famine Early Warning Systems

GDR

Geophysical Data Record

GEO

United States Group on Earth Observations

GEOSS

Global Earth Observation System of Systems

GFO

Geosat Follow-On Mission

GIM

Global Ionospheric Map

GLAM

Global Agricultural Monitoring Program

GLIN

Great Lakes Information Network

GPS

Global Positioning System

GRACE

Gravity Recovery and Climate Experiment

GRLM

Global Reservoir and Lake Monitor

GSFC

Goddard Space Flight Center

GUI

Graphical User Interface

ICESat

Ice, Cloud and Land Elevation Satellite

IGDR

Intermediate Geophysical Data Record

IPCC

Intergovernmental Panel on Climate Change

IRI

International Reference Ionosphere Model

ISRO

Indian Space Research Organization

ISS

Integrated Systems Solution

ITRF

International Terrestrial Reference Frame

ITSS

Information Technology and Scientific Services

JPL

Jet Propulsion Laboratory

LAD

Least Absolute Deviation

LakeNet

World Lakes Network

LEGOS

Laboratoire d’Études en Géophysique et Océanographie Spatiales

MODIS

MODerate resolution Imaging Spectroradiometer

MOE

Medium Precision Orbit Ephemerides

NASA

National Aeronautic and Space Administration

NCEP

National Centers for Environmental Prediction

NGA

National Geospatial Intelligence Agency

NOAA

National Oceanic and Atmospheric Administration

NOGAPS

Navy Operational Global Atmospheric Prediction System

NRC

National Research Council

NRL

Naval Research Lab

OGA

Office of Global Analysis

OMB

Office of Management and Budget

OSTM

Ocean Surface Topography Mission

POE

Precise Orbit Ephemerides

RMS

Root Mean Square

SARAL

Satellite with ARgos and ALtika

SDR

Sensor Data Record

SGT

Stinger Ghaffarian Technologies company

SLR

Satellite Laser Ranging

SSALT

Solid-State ALTimeter

SWOT

Surface Water and Ocean Topography

T/P

TOPEX/Poseidon

TRMM

Tropical Rainfall Measuring Mission

UMD

University of Maryland

USAID

United States Agency for International Development

USDA

United States Department of Agriculture

USGS

United States Geological Survey

WAOB

World Agriculture Outlook Board

WAP

World Agriculture Production

WASDE

World Agriculture Supply and Demand Estimate

Notes

Acknowledgments

The authors wish to acknowledge the USDA/FAS/OGA and NASA grants NNS06AA15G, NNX08AM72G, NNX08AT88G and NASA/JPL sub-award 4–33637(UMD) for supporting this program. Acknowledgment also goes to NASA/PODAAC, CNES/AVISO, LEGOS, NOAA, ESA UK-PAF and ESA F-PAC, for provision of the T/P, Jason-1, Jason-2, GFO, ERS and Envisat satellite altimetric data sets.

References

  1. Alsdorf D, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002. doi: 10.1029/2006RG000197
  2. Anulacion M (2003) Middle East and Turkey: warmer than normal and plenty of moisture. http://www.fas.usda.gov/pecad2/highlights/2003/12/me_turk_dec2003/index.htm
  3. Beckley B, Zelensky N, Luthcke S, Callahan P (2004) Towards a seamless transition from TOPEX/Poseidon to Jason-1. Marine Geodesy Special Issue on Jason-1 Calibration/Validation Part III 27(3–4):373–389Google Scholar
  4. Bilitza D, Koblinsky C, Beckley B, Zia S, Williamson R (1995) Using IRI for the computation of ionospheric corrections for altimeter data. Adv Space Res 15(2):113–120CrossRefGoogle Scholar
  5. Birkett CM (1995) The contribution of Topex/Poseidon to the global monitoring of climatically sensitive lakes. JGR-Oceans 100(C12): 25, 179–25, 204Google Scholar
  6. Birkett CM, Mason IM (1995) A new global lakes database for a remote sensing programme studying climatically sensitive large lakes. J Great Lakes Res 21(3):307–318CrossRefGoogle Scholar
  7. Birkett CM, Alsdorf D, Harding D (2004) River and water body – stage, width and gradient: satellite radar altimetry, interferometric SAR, and laser altimetry. In: Anderson MG (ed) The encyclopedia of hydrological sciences, vol 2. Hydrological application of remote sensing: surface states. Wiley, Chichester, UK. http://mrw.interscience.wiley.com/emrw/9780470848944/ehs/article/hsa065/current/abstract
  8. Chambers DP, Ries JC, Urban TJ (2003) Calibration and verification of Jason-1 using global along-track residuals with TOPEX. Mar Geod 26:305–317CrossRefGoogle Scholar
  9. Cornford SL, Feather MS, Hicks KA (2001) DDP – A tool for life-cycle risk management. In: Proc IEEE aerospace conference, 10–17 March, vol 1, pp 441–451. http://ddptool.jpl.nasa.gov/docs/f344d-slc.pdf
  10. Crétaux J-F, Birkett CM (2006) Lake studies from satellite radar altimetry. In: Observing the earth from space, Geosciences Comptes Rendus, French Academy of Sciences. doi: 10.1016/j.crte.2006.08.002 Google Scholar
  11. Fu L-L (ed) (2003) Wide-swath altimetric measurement of ocean surface topograph. JPL Publication 03-002. ftp://ftp-oceans.jpl.nasa.gov/pub/llf/WSOAreportFinal2.pdf
  12. Fu L-L, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Inter Geophys Series Vol 69, Academic, San Diego, CA, ISBN 0122695453, 9780122695452Google Scholar
  13. Hutchinson C, Drake S, van Leeuwen W, Kaupp V, Haithcoat T (2003) Characterization of PECAD’s DSS: a zeroth-order assessment and benchmarking preparation. Report presented to NASA HQ, Washington, DC, and prepared by University of Arizona and University of Missouri.Google Scholar
  14. Koblinsky CJ, Ray RD, Beckley BD, Wang YM, Tsaoussi L, Brenner LC, Williamson RG (1998) NASA ocean altimeter pathfinder project report 1: Data processing handbook. NASA Technical Memorandum NASA/TM-1998-208605. http://sealevel-lit.jpl.nasa.gov/science/search-details.cfm?ID=897
  15. Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Chinn DS, Marr GC (2001) Precise orbit determination for Geosat follow-on using satellite laser ranging data and intermission altimeter crossovers. In: Proc NASA/GSFC flight mechanics symposium NASA/CP-2001-209986, pp 377–391. http://ntrs.nasa.gov/index.jsp?method=order&oaiID=20010084987
  16. Mangeni Bennie T (2006) The dwindling Lake Victoria water level. In: Proc IASTAD environmentally sound technology in water resources management, Gaborone, Botswana, Sept 11–13, No 515–803, pp 85–90. http://www.actapress.com/PaperInfo.aspx?PaperID=28258&reason=500
  17. McKellip R, Beckley B, Birkett C. Blonski S, Doorn B, Grant B, Estep L, Moore R, Morris K, Ross K, Terrie G, Zanoni V (2004) PECAD’s global reservoir and lake monitor: a systems engineering report. Version 1.0, NASA/John C. Stennis Space Center, MississippiGoogle Scholar
  18. Ménard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kunstmann G (2003) The Jason-1 mission. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):131–146Google Scholar
  19. Mertes LAK, Dekker AG, Brakenridge GR, Birkett CM, Létourneau G (2004) Rivers and lakes. In: Ustin SL, Rencz A (eds) Natural resources and environment manual of remote sensing, vol 5. Wiley, New York. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471317934.html
  20. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from Topex/Poseidon altimetric data. Adv Space Res 36:358–368CrossRefGoogle Scholar
  21. Morris CS, Gill SK (1994) Variation of Great Lakes water levels derived from Geosat altimetry. Water Res Res 30(4):1009–1017CrossRefGoogle Scholar
  22. NRC (2007) Earth Science and applications from space: national imperatives for the next decade and beyond, committee on earth science and applications from space: a community assessment and strategy for the future. National Research Council, Executive Summary, ISBN: 0-309-10387-8. http://www.nap.edu/catalog.php?record_id=11820
  23. Reynolds C (2005) Low water levels observed on Lake Victoria. USDA/FAS/OGA, http://www.fas.usda.gov/pecad/highlights/2005/09/uganda_26sep2005/.
  24. Reynolds CA, Doorn B, Birkett CM, Beckley B (2007) Monitoring reservoir and lake water heights with satellite radar altimeters. Africa GIS 2007 Conference, Ouagadougou, Burkina Faso, Sept 17–21Google Scholar
  25. Resti A (1993) Envisat’s radar altimeter: RA-2. ESA Bull 76:58–60. http://www.esa.int/esapub/pi/bulletinPI.htm
  26. Riebeck H (2006) Lake Victoria’s falling waters. NASA earth observatory. http://earthobservatory.nasa.gov/Study/Victoria/victoria.html
  27. Ross K, McKellip R (2006) Verification and validation of NASA-supported enhacements to PECAD’s decision support tools. NASA/John C. Stennis Space Center, Mississipi. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060025997_2006169224.pdf
  28. Scott RF, Baker SG, Birkett CM, Cudlip W, Laxon SW, Mansley JAD, Mantripp DR, Morley JG, Munro M, Palmer D, Ridley JK, Strawbridge F, Rapley CG, Wingham DJ (1992) An Investigation of the Tracking performance of the ERS-1 radar altimeter over non-ocean surfaces. UK-PAF report to ESA No. PF-RP-MSL-AL-0100, ESA Contract No 9575/91/HGE-IGoogle Scholar
  29. Scott RF, Baker SG, Birkett CM, Cudlip W, Laxon SW, Mantripp DR, Mansley JA, Morley JG, Rapley CG, Ridley JK, Strawbridge F, Wingham DJ (1994) A comparison of the performance of the ice and ocean tracking modes of the ERS-1 radar altimeter over non-ocean surfaces. Geophys Res Lett 21(7):553–556CrossRefGoogle Scholar
  30. Shum C, Yi Y, Cheng K, Kuo C, Braun A, Calmant S, Chambers D (2003) Calibration of Jason-1 altimeter over Lake Erie. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):335–354Google Scholar
  31. Sutcliffe JV, Petersen G (2007) Lake Victoria: derivation of a corrected natural water level series, technical note. Hydrol Sci J 52(6):1316–1321CrossRefGoogle Scholar
  32. Swenson SC, Yeh PJ, Wahr J, Famiglietti J (2006) GRACE estimates of terrestrial water storage: validation and applications. Eos Trans AGU 87(52), Fall meet. Suppl., Abstract G13C-02http://65.216.151.13/meetings/fm06/fm06-sessions/fm06_G13C.html
  33. UNEP (2006) Africa’s lakes: atlas of our changing environment. United Nations Environment Programme, pp 28–30. http://na.unep.net/AfricaLakes/
  34. Vincent P, Desai SD, Dorandeu J, Ablain M, Soussi B, Callahan PS, Haines BJ (2003) Jason-1 geophysical performance evaluation. Marine Geodesy Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):167–186Google Scholar
  35. Zanife OZ, Vincent P, Amarouche L, Dumont JP, Thibaut P, Labroue S (2003) Comparison of the Ku-Band range noise level and the relative sea-state bias of the Jason-1, TOPEX, and Poseidon-1 radar altimeters. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):201–238Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  2. 2.International Production Assessments Branch, Office of Global Analysis, Foreign Agricultural ServiceU.S. Department of AgricultureWashingtonUSA
  3. 3.SGTNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations