In situ Absolute Calibration and Validation: A Link from Coastal to Open-Ocean Altimetry

Chapter

Abstract

The determination of global and regional mean sea level variations with accuracies better than 1 mm/year is an important yet challenging problem, the resolution of which is central to the current debate on climate change and its impact on the environment. To address this, highly accurate time series from both satellite altimetry and tide gauges are needed. In both cases, the desired accuracy represents a significant challenge for the geodetic community. From the perspective of space borne altimetry, systematic errors from the orbit, reference frame and altimeter systems are all important limiting factors and must be minimized in order to derive data products of greatest geophysical value. Indeed, the objective for the overall accuracy of future altimeter systems is 1-cm (RMS) along with a stability of 1 mm/year. From the terrestrial perspective, estimating the vertical velocity of tide gauge sites to sufficient accuracy is also one of the most important and challenging problems in modern geodesy. Essential to reaching these goals in the measurement of mean sea level variation are ultra-precise validation and calibration techniques, including in situ absolute calibration experiments. Most of the present calibration experiments are on or near the coast, reinforcing the need for developing such techniques to unify the altimetric error budget for both open-ocean and local (coastal) conditions.

Keywords

Altimetry GPS In situ instrumentation Reference frame Sea level 

Abbreviations

ALT-A or B

Side A or B of the TOPEX altimeter

AMR

Advanced Microwave Radiometer (OSTM/Jason-2)

Cal/val

Calibration/validation

CCAR

Colorado Centre for Astrodynamics Research

CERGA

Centre d’Etudes et de Recherches Geodynamiques et Astronomiques

CGPS

Continuous Global Positioning System

CNES

Centre National d’Étude Spatiales

CU

Colorado University

DORIS

Détermination d’Orbite et Radiopositionnement Intégrés par Satellite

ECMWF

European Centre for Medium-Range Weather Forecasts

EM

Electro Magnetic

Envisat

Environmental Satellite

ERS (1 & 2)

European Remote Sensing

EUMETSAT

European Organisation for the Exploitation of Meteorological Satellites

FTLRS

French Transportable Laser Ranging System

GCE

Geographically Correlated Errors

GDR

Geophysical Data Records (prefix O = Operational, I = Interim)

GFO

Geosat Follow-On

GLONASS

GLObal NAvigation Satellite System

GOES

Geostationary Operational Environmental Satellites

GNSS

Global Navigation Satellite Systems

GPS

Global Positioning System

GRACE

Gravity Recovery and Climate Experiment

GSFC

Goddard Space Flight Centre

IERS

International Earth Rotation Service

IGDR

Interim Geophysical Data Record

IGN

Institut Géographique National

IGS

International GPS Service for geodynamics

ISDGM/CNR

Istituto per lo Studio della Dinamica delle Grandi Masse / Consiglio Nazionale delle Ricerche

ITRF

International Terrestrial Reference Frame

JMR

Jason-1 Microwave Radiometer

JPL

Jet Propulsion Laboratory

MGDR

Merged Geophysical Data Record

MLE

Maximum Likelihood Estimator

NASA

National Aeronautics and Space Administration

NOAA

National Oceanic and Atmospheric Administration

OGDR

Operational Geophysical Data Record

OMR

Orbit Minus Range

OSTM

Ocean Surface Topography Mission

OSTST

Ocean Surface Topography Science Team

POD

Precision Orbit Determination

POE

Precision Orbit Ephemerides

RMS

Root mean square

RSS

Root Sum of Squares

SHOM

Service Hydrographique et Océanographique de la Marine

SLR

Satellite Laser Ranging

SPTR

Scanning Point Target Response

SSB

Sea State Bias

SSH

Sea Surface Height

SWH

Significant Wave Height

T/P

TOPEX/Poseidon

TMR

TOPEX Microwave Radiometer

TCA

Time of Closest Approach

USO

Ultra Stable Oscillator

VLBI

Very Long Baseline Interferometry

VSAT

Very Small Aperture Terminal

WVR

Water Vapor Radiometer

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Barlier F, Lefebvre M (2001) A new look at planet Earth: satellite geodesy and geosciences, The Century of Space Science. Kluwer, Dordrecht, The Netherlands, pp 1623–1651Google Scholar
  3. Bar-Sever Y (2008) APPS: The automatic precise point positioning service from JPL’s global differential GPS (GDGPD) system. ION GNSS 2008 meeting, Savannah, USA, September (http://apps.gdgps.net)
  4. Benveniste J (1997) ERS-2 altimetry calibration. In: Proceedings of the 3rd ERS symposium. March 17–21, ESA SP-414, vol IIIGoogle Scholar
  5. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley L, Unnikrishnan A (2007) Ocean climate change and sea level, In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) Ed, Cambridge University Press, Cambridge/New YorkGoogle Scholar
  6. Bonnefond P, Exertier P, Schaeffer P, Bruinsma S, Barlier F (1995) Satellite altimetry from a short-arc orbit technique: application to the Mediterranean. J Geophys Res 100(C12):25365–25382CrossRefGoogle Scholar
  7. Bonnefond P, Exertier P, Ménard Y, Jeansou E, Manzella G, Sparnocchia S, Barlier F (1997) Calibration of radar altimeters and validation of orbit determination in the Corsica-Capraia Area. In: 3rd ERS symposium, Florence, vol III, pp 1525–1528Google Scholar
  8. Bonnefond P, Exertier P, Barlier F (1999) Geographically correlated errors observed from a laser-based short-arc technique. J Geophys Res 104(C7):15885–15893CrossRefGoogle Scholar
  9. Bonnefond P, Exertier P, Laurain O, Ménard Y, Orsoni A, Jan G, Jeansou E (2003a) Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):261–284Google Scholar
  10. Bonnefond P, Exertier P, Laurain O, Ménard Y, Orsoni A, Jeansou E, Haines B J, Kubitschek D, Born G (2003b) Leveling sea surface using a GPS catamaran. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):319–334Google Scholar
  11. Born GH et al (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99(C12):24517–24526CrossRefGoogle Scholar
  12. Brown ST, Desai S, Wenwen L, Tanner AB (2007) On the long-term stability of microwave radiometers using noise diodes for calibration. IEEE Trans Geosci Remote Sensing 45(7):1908–1920CrossRefGoogle Scholar
  13. Brown S, Desai S, Keihm S, Lu W (2010) Microwave radiometer calibration on decadal time scales using On-Earth brightness temperature references: application to the Topex microwave radiometer. J Atmos Ocean Technol 26:2579–2591Google Scholar
  14. Calmant S, Seyler F (2006) Continental surface waters from satellite altimetry. CR Geosci 338: 1113–1122CrossRefGoogle Scholar
  15. Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42, RG3001. doi:10.1029/2003RG000139Google Scholar
  16. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry in “satellite altimetry and earth sciences. In: Fu LL, Cazenave A (eds) A handbook of techniques and applications. Academic, San Diego, CAGoogle Scholar
  17. Christensen EJ, Haines BJ, Keihm SJ, Morris CS, Norman RA, Purcell GH, Williams BG, Wilson BD, Born GH, Parke ME, Gill SK, Shum CK, Tapley BD, Kolenkiewicz R, Nerem RS (1994) Calibration of TOPEX/Poseidon at platform harvest. J Geophys Res 99(C12):24465–24485CrossRefGoogle Scholar
  18. Crétaux J-F, Calmant S, Romanovski V, Shibuyin A, Lyard F, Bergé-Nguyen M, Cazenave A, Hernandez F, Perosanz F (2008) Implementation of a new absolute calibration site for radar altimeter in the continental area: lake Issykkul in Central Asia. J Geod. doi:10.1007/s00190-008-0289-7 Google Scholar
  19. Cristea E, Moore P (2007) Altimeter bias determination using two years of transponder observations. In: Proceedings of the Envisat symposium 2007, Montreux, Switzerland (ESA SP-636, July 2007)Google Scholar
  20. Desai S, Haines BJ (2004) Monitoring measurements from the Jason-1 microwave radiometer and independent validation with GPS. In: Special issue on Jason-1 calibration/validation, Part 2. Mar Geod 27(1–2):221–240Google Scholar
  21. Exertier P, Nicolas J, Berio P, Coulot D, Bonnefond P, Laurain O (2004) The role of laser ranging for calibrating Jason-1: the Corsica tracking campaign. In: Special issue on Jason-1 calibration/validation, Part 2. Mar Geod 27(1–2):333–340Google Scholar
  22. Exertier P, Bonnefond P, Deleflie F, Barlier F, Kasser M, Biancale R, Ménard Y (2006) Contribution of laser ranging to earth sciences. CR Geosci 338:958–967CrossRefGoogle Scholar
  23. Francis CR (1992) The height calibration of the ERS-1 radar altimeter. In: Proceedings of the first ERS-1 symposium – space at the service of our environment. ESA Spec Pub ESA SP-359(1): 381–393Google Scholar
  24. Fu LL, Christensen EJ, Yamarone CA Jr, Lefebvre M, Ménard Y, Dorrer M, Escudier P (1994) TOPEX/Poseidon mission overview. J Geophys Res 100(C12):24369–24381Google Scholar
  25. Gill SK, Edwing RF, Jones DF, Mero TN, Moss MK, Samant M, Shih HH, Stoney WM (1995) NOAA/national ocean service platform harvest instrumentation. Mar Geod 18(1–2):49–68CrossRefGoogle Scholar
  26. Gourine B, Kahlouche S, Exertier P, Berio P, Coulot D, Bonnefond P (2008) Corsica SLR positioning campaigns (2002 and 2005) for satellite altimeter calibration missions. Mar Geod (31): 103–116CrossRefGoogle Scholar
  27. Haines BJ, Bar-Sever Y (1998) Monitoring the TOPEX microwave radiometer with GPS: stability of wet tropospheric path delay measurements. Geophys Res Lett 25(19):3563–3566CrossRefGoogle Scholar
  28. Haines BJ, Dong D, Born GH, Gill SK (2003) The harvest experiment: monitoring Jason-1 and TOPEX/Poseidon from a California offshore platform. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):239–259Google Scholar
  29. Haines BJ, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. In: Special issue on Jason-1 calibration/validation, Part 2. Mar Geod 27(1–2):299–318Google Scholar
  30. Hein G, Landau H, Blomenhofer H (1990) Determination of instantaneous sea surface, wave heights and ocean currents using satellite observations of the global positioning system. Mar Geod 14:217–224CrossRefGoogle Scholar
  31. Jan G, Ménard Y, Faillot M, Lyard F, Jeansou E, Bonnefond P (2004) Offshore absolute calibration of space borne radar altimeters. In: Special issue on Jason-1 calibration/validation, Part 3. Mar Geod 27(3–4):615–629Google Scholar
  32. King MA, Watson CS, Penna NT, Clarke PJ (2008) Subdaily signals in GPS observations and their effect at semiannual and annual periods. Geophys Res Lett 35(3):1–5CrossRefGoogle Scholar
  33. Kolenkiewicz R, Martin C (1982) Seasat altimeter height calibration. J Geophys Res 87(C5): 3189–3197CrossRefGoogle Scholar
  34. Labroue S, Gaspar P, Dorandeu J, Zanife O Z, Mertz F, Vincent P, Choquet D (2004) Non parametric estimates of the sea state bias for the Jason-1 radar altimeter. In: Special issue on Jason-1 calibration/validation, Part 3. Mar Geod 27(3–4):453–481Google Scholar
  35. Lemoine FG, Zelensky NP, Lutchke SB, Rowlands DD, Williams TA, Chinn D (2007) Improvement of the complete TOPEX/Poseidon and Jason-1 orbit time series: current status (abstract). In: Proceedings of the OST/ST Meeting, Hobart, AustraliaGoogle Scholar
  36. Lowe ST, Zuffada C, LaBrecque J, Lough M, Lerma J (2002) Five-cm-precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29(10):1–4CrossRefGoogle Scholar
  37. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS and altimeter data. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):399–421Google Scholar
  38. MacDoran PF, Born GH (1991) Time, frequency and space geodesy: impact on the study of climate and global change. Proc IEEE 79(7):1063–1069CrossRefGoogle Scholar
  39. Martin C, Kolenkiewicz R (1981) Calibration validation of the GEOS-3 altimeter. J Geophys Res 86(7):6369–6381CrossRefGoogle Scholar
  40. Martinez-Benjamin JJ, Martinez-Garcia M, Gonzales Lopez S et al (2004) Ibiza absolute calibration experiment: survey and preliminary results. In: Special issue on Jason-1 calibration/validation, Part 3. Mar Geod 27(3–4):657–681Google Scholar
  41. McCarthy DD, Petit G (2004) IERS Conventions 2003 (IERS Technical Note; 32). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 127pp, paperback, ISBN 3-89888-884-3Google Scholar
  42. Ménard Y, Jeansou E, Vincent P (1994) Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: additional results at Harvest. J Geophys Res 99(C12):24487–24504CrossRefGoogle Scholar
  43. Ménard Y, Fu L-L, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kunstmann G (2003) The Jason-1 mission. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):131–146Google Scholar
  44. Mitchum GT (1998) Monitoring the stability of satellite altimeters with tide gauges. J Atmos Ocean Technol 15:721–730CrossRefGoogle Scholar
  45. Morris CS, Dinardo SJ, Christensen EJ (1995) Overview of the TOPEX/Poseidon platform harvest verification experiment. Mar Geod 18(1–2):25–38CrossRefGoogle Scholar
  46. Murphy CM, Moore P, Woodworth P (1996) Short-arc calibration of the TOPEX/Poseidon and ERS 1 altimeters utilizing in situ data. J Geophys Res 101(C6):14191–14200CrossRefGoogle Scholar
  47. Nerem RS, Haines BJ, Hendricks J, Minster JF, Mitchum GT, White WB (1997) Improved determination of global mean sea level variations using TOPEX/Poseidon altimeter data. Geophys Res Lett 24(11):1331–1334CrossRefGoogle Scholar
  48. Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelengths. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  49. OSTST minutes of the Nice meeting (2008) France, November 10–12Google Scholar
  50. OSTST minutes of the St Petersburg meeting (2004) Florida, November 4–6Google Scholar
  51. Pavlis EC, Mertikas SP, GAVDOS Team (2004) The GAVDOS mean sea level and altimeter calibration facility: results for Jason-1. In: Special issue on Jason-1 calibration/validation, Part 3. Mar Geod 27(3–4):631–655Google Scholar
  52. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. doi:10.1029/2003GL018828 CrossRefGoogle Scholar
  53. Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112(B2):1–19CrossRefGoogle Scholar
  54. Powell RJ (1986) Relative vertical positioning using ground transponders with the ERS-1 altimeter. IEEE Trans Geosci Remote Sensing GE-24(3):421–425Google Scholar
  55. Pugh D (1987) Tides, surges and mean sea level: a handbook for engineers and scientists. Wiley, Chichester, 472pGoogle Scholar
  56. Ruf CS, Keihn SJ, Subramanya B, Jansen M (1994) TOPEX/Poseidon microwave radiometer performance and in-flight calibration. J Geophys Res 99(C12):24915–24926CrossRefGoogle Scholar
  57. Rutkowska M, Noomen R (1998) Range biases and station position analysis for network solutions derived from SLR data in the period 1993–1995. In: Proceeding of the 11th international workshop on laser ranging, Deggendorf, Germany, September 21–25, p 70Google Scholar
  58. Testut L, Wöppelmann G, Simon B, Téchiné P (2005) The sea level at Port-aux-Français, Kerguelen Island, from 1950 to the present. Ocean Dyn. doi:10.1007/s10236-005-0056-8 Google Scholar
  59. Treuhaft RN, Lowe ST, Zuffada C, Chao Y (2001) 2-cm GPS altimetry over Crater Lake. Geophys Res Lett 28(23):4343–4346CrossRefGoogle Scholar
  60. Treuhaft RN, Chao Y, Lowe ST, Young LE, Zuffada C, Cardellach E (2003) Monitoring coastal eddy evolution with GPS altimetry. In: proceeding of international workshop on GPS meteorology. Tsukuba, JapanGoogle Scholar
  61. Vincent P, Desai SD, Dorandeu J, Ablain M, Soussi B, Callahan PS, Haines BJ (2003) Jason-1 geophysical performance evaluation. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):167–186Google Scholar
  62. Vondrak J (1977) Problem of smoothing observational data II. Bull Astron Inst Czech 28:84–89Google Scholar
  63. Watson CS (2005) Satellite altimeter calibration and validation using GPS buoy technology. Thesis for Doctor of Philosophy, Centre for Spatial Information Science, University of Tasmania, Australia, 264pp. Available at: http://eprints.utas.edu.au/254/
  64. Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS Buoys in Bass Strait, Australia. In: Special issue on Jason-1 calibration/validation, Part 1. Mar Geod 26(3–4):285–304Google Scholar
  65. Watson CS, White N, Coleman R, Church J, Morgan P, Govind R (2004) TOPEX/Poseidon and Jason-1 absolute calibration in Bass Strait, Australia. In: Special issue on Jason-1 calibration/validation, Part 2. Mar Geod 27(1–2):107–131Google Scholar
  66. Watson CS, Tregoning P, Coleman R (2006) The impact of solid earth tide models on GPS time series analysis. Geophys Res Lett 33:L08306. doi:10.1029/2005GL025538 CrossRefGoogle Scholar
  67. Watson CS, Coleman R, Handsworth R (2008) Coastal tide gauge calibration: a case study at Macquarie Island using GPS buoy techniques. J Coastal Res 24(4):1071–1079CrossRefGoogle Scholar
  68. White NJ, Coleman R, Church JA, Morgan PJ, Walker SJ (1994) A southern hemisphere verification for the TOPEX/Poseidon altimeter mission. J Geophys Res 99(C12):24505–24516CrossRefGoogle Scholar
  69. Woodworth P, Moore P, Dong X, Bingley R (2004) Absolute calibration of the Jason-1 altimeter using UK tide gauges. In: Special issue on Jason-1 calibration/validation, Part 2. Mar Geod 27(1–2):95–106Google Scholar
  70. Zumberge J, Watkins M, Webb F (1998) Characteristics and applications of precise GPS clock solutions every 30 s. Navigation 44(4):449–456Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Observatoire de la Côte d’Azur – GeoAzurGrasseFrance
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Surveying and Spatial Science Group, School of Geography and Environmental StudiesUniversity of TasmaniaHobartAustralia

Personalised recommendations