Radar Altimetry: Past, Present and Future

  • J. BenvenisteEmail author


This chapter describes the radar altimetry principle and relates the radar altimetry missions since the first demonstration mission, Skylab in 1975, to the most recently planned mission, Sentinel-3, extending to a proposed revolutionary two-dimensional topography mission, SWOT. A historical recall and a description of each mission are provided, recalling their achievements with a focus on precursor applications of radar altimetry to coastal zones.


Coastal Zone Altimetry CryoSat-2 Envisat ERS-1 ERS-2 GEOS-3 Geosat GFO GFO-2 HY-2 Jason-1 Jason-2 Jason-3 Radar Altimetry missions Radar Altimetry principle SARAL Seasat Sentinel-3 Skylab SWOT TOPEX/Poseidon 



Advanced Along-Track Scanning Radiometer


ALtimeter-Based Investigations in COrsica, Capraia and Contiguous Areas


Value added satellite ALTImetry for COastal REgions


or “A-DCS” Advanced data collection system - data collection and location system (France) on NOAA operational satellites


Committee for Earth Observation Satellites


Carbon Fibre Reinforced Plastic


Centre National d’Études Spatiales (National Centre of Space Studies)


China National Space Administration


ESA development of COASTal ALTimetry


Détermination d’Orbite et Radiopositionement Integré par Satellite


Data Unification and Altimeter Combination System


European Commission


Russian earth reference frame


European Remote Sensing Satellite


European Space Agency


European Space Operation Centre, Darmstadt


European Space Research INstitute, Rome


European Meteorological Satellite Agency


Geosat Follow-On – geodesy satellite (US Navy)


European initiative on Global Monitoring for Environment and Security


Global Navigation Satellite Systems


Gravity and Ocean Circulation Explorer (ESA)


Global Positioning System


Gravity Recovery and Climate Experiment


ESA GMES service element


HaiYang (for Ocean in Chinese) satellite mission


International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union


Indian Space Research Organization


Journal of Geophysical Research


Ka-band Radar INterferometer (on SWOT)


Low Earth Orbit


Land Monitoring Core Service LEO


Local Time on Descending Node


EU Marine Core Service


MEdium Resolution Imaging Spectrometer


MicroWave Radiometer


National Aeronautics and Space Administration


National Oceanic and Atmospheric Administration


National Satellite Ocean Application Service


CNES Development of “Prototype Innovant de Système de Traitement pour les Applications Côtières et l’Hydrologie”


Indian Polar Satellite Launch Vehicle


Radar Altimeter 2nd generation on Envisat


ESA development of SAR altimetry mode studies and applications over ocean, coastal zones and inland water


Synthetic Aperture Radar


Satellite with ARgos and ALtika


SAR/Interferometric Radar ALtimeter


Satellite Pour l’Observation de la Terre (optical imaging)


SAR Radar ALtimeter


Shuttle Radar Topography Mission


Sea Surface Height


Significant Wave Height


Surface Water Ocean Topography mission


World Geodetic System 1984



This chapter holds information communicated to me by a number of colleagues, over the years, in particular of the older generation, who were in fact the pioneers of the radar altimetry adventure, for whom I have a great admiration. They are too numerous to be all cited here, but they will recognize themselves and receive all my gratitude. In particular I thank and dedicate this chapter to my long time colleague and friend, Yves Ménard, who passed away in 2008, with whom I had so much pleasure and satisfaction to organize the “15 Years of Progress in Radar Altimetry” Symposium in Venice in 2006. I recall our precursor conversations about how to tackle the coastal zone with altimetry. Discussions with Yves were always a great inspiration. Yves would be proud of the results achieved in the past 2 years. Yves remains always present in my memory.


  1. Agreen RW (1982) The 3.5-year GEOS-3 data set, NOAA technical memorandum C 55.13/2: NOS NGS 33Google Scholar
  2. Aguirre M, Berruti B, Bezy JL, Drinkwater M, Heliere F, Klein U, Mavrocordatos C, Silvestrin P, Greco B, Benveniste J (2007) Sentinel-3: The ocean and medium-resolution land mission for GMES operational services, ESA Bulletin, No 131, Aug. 2007, 24–29, URL:
  3. Anzenhofer M, Shum CK, Rentsh M (1999) Costal altimetry and applications. Tech. Rep. n. 464, Geodetic Science and Surveying, The Ohio State University Columbus, USA, pp 1–40Google Scholar
  4. Benveniste J (1993) Towards more efficient use of radar altimeter data, ESA Bulletin No. 76Google Scholar
  5. Benveniste J, Ménard Y (eds) (2006) Proceedings of the “15 years of progress in radar altimetry” symposium, Venice, Italy, 13–18 March 2006, ESA Special Publication SP-614Google Scholar
  6. Benveniste J, Roca M, Levrini G, Vincent P, Baker S, Zanife O, Zelli C, Bombaci O (2001) The radar altimetry mission: RA-2, MWR, DORIS and LRR, ESA Bulletin, No. 106Google Scholar
  7. Berry P, Rogers C, Garlick J, Freeman JA, Benveniste J (2006) The envisat burst mode echoes – a new look from satellite radar altimetry. In: Benveniste J, Ménard Y (eds) Proceedings of the “15 years of progress in radar altimetry” symposium, Venice, Italy, 13–18 March 2006, ESA Special Publication SP-614Google Scholar
  8. Calmant S, Bergé-Nguyen M, Cazenave A (2002) Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings. Geophys J Int 151(3):795–808. doi: 10.1046/j.1365-246X.2002.01802.x CrossRefGoogle Scholar
  9. Chelton DB (ed) (1988) WOCE/NASA Altimeter Algorithm Workshop, Oregon State University, Corvallis, 24–26August 1987, U.S. WOCE Technical Report no. 2, U.S. Planning Office for WOCE, TXGoogle Scholar
  10. Crout RL (1997) Coastal currents from satellite altimetry. Sea Technol 8:33–37Google Scholar
  11. CryoSat Mission and Data Description (2007) Doc. No.: CS-RP-ESA-SY-0059, ESAGoogle Scholar
  12. DUACS (1997) Accessed 1 October 2009
  13. Fellous JL, Wilson S, Lindstrom E, Bonekamp H, Ménard Y, Benveniste J (2006) Summary of the future of altimetry session. In: Benveniste J, Ménard Y (eds) Proceedings of the “15 years of progress in radar altimetry” symposium, Venice, Italy, 13–18 March 2006, ESA Special Publication SP-614Google Scholar
  14. Fu LL, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Inter Geophys Series 69:463, Academic, San Diego, ISBN: 0-12-269543-3Google Scholar
  15. Fu LL, Christensen EJ, Lefebvre M, Ménard Y (1994) TOPEX/Poseidon mission overview. J Geophys Res, TOPEX/Poseidon Special Issue, 99(C12):24, 369–324, 382Google Scholar
  16. Gommenginger C, Challenor P, Quartly G, Gómez-Enri J, Srokosz M, Caltabiano A, Berry P, Mathers L, Garlick J, Cotton P D, Carter D J T, LeDuc I, Rogers C, Benveniste J, Milagro M P (2004) RAIES: ENVISAT RA2 individual echoes and S-band data for new scientific applications for ocean, coastal, land and ice remote sensing. In: Proceedings of the 2004 Envisat & ERS symposium, 6–10 Sept 2004, Salzburg, Austria, ESA Special Publication SP-572Google Scholar
  17. Gommenginger C, Challenor P, Gómez-Enri J, Quartly G, Srokosz M, Berry P, Garlick J, Cotton PD, Carter D, Rogers C, Haynes S, LeDuc I, Milagro MP, Benveniste J (2006) New scientific applications for ocean, land and ice remote sensing with ENVISAT altimeter individual echoes. In: Benveniste J, Ménard Y (eds) Proceedings of the “15 years of progress in radar altimetry” symposium, Venice, Italy, 13–18 March 2006, ESA Special Publication SP-614Google Scholar
  18. Gommenginger C, Challenor P, Quartly G, Srokosz M, Berry P, Rogers C, Milagro MP, Benveniste J (2007) ENVISAT altimeter individual echoes: new scientific applications for ocean, land and ice remote sensing, ENVISAT Symposium, Montreux, 23–27 April 2007, ESA Special Publication SP-636Google Scholar
  19. Kaula WM (1970) The terrestrial environment: solid earth and ocean physics. Williamstown Report, NASAGoogle Scholar
  20. Koblinsky CJ, Gaspar P, Lagerloef G (eds) (1992) The future of spaceborne altimetry, oceans and climate change, a long term strategy (so-called “Purple Book”), March 1992Google Scholar
  21. Le Provost C (1983) An analysis of SEASAT altimeter measurements over a coastal area: the English Channel. J Geophys Res 88(C3):1647–1654Google Scholar
  22. Le Traon PY, Gaspar P, Bouyssel F, Makhmara H (1995) Using TOPEX/Poseidon data to enhance ERS-1 data. J Atmos Ocean Technol 12(1):161–170CrossRefGoogle Scholar
  23. Manzella GMR, Borzelli GL, Cipollini P, Guymer TH, Snaith HM, Vignudelli S (1997) Potential use of satellite data to infer the circulation dynamics in a marginal area of the Mediterranean Sea. In: Proceedings of 3rd ERS symposium – space at the service of our environment, Florence (Italy), 17–21 March 1997, vol 3, pp 1461–1466, European Space Agency Special Publication ESA SP-414Google Scholar
  24. Marsh JG, Koblinsky CJ, Lerch F, Klosko SM, Robbins JW, Williamson RG, Patel GB (1990) Dynamic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of Seasat altimeter data. J Geophys Res 95(C8):13129–13150Google Scholar
  25. McGoogan JT, Miller LS, Brown GS, Hayne GS (1974) The S-193 radar altimeter experiment, IEEE Trans 62(6):793–803Google Scholar
  26. Minster JF, Genco M-L, Brossier C (1995) Variations of the sea level in the Amazon Estuary. Cont Shelf Res 15(10):1287–1302CrossRefGoogle Scholar
  27. Mercier F, Ablain M, Carrère L, Dibarboure G, Dufau C, Labroue S, Obligis E, Sicard P, Thibaut P, Commien L, Moreau T, Garcia G, Poisson JC, Rahmani A, Birol F, Bouffard J, Cazenave A, Crétaux JF, Gennero MC, Seyler F, Kosuth P, Bercher N (2008) A CNES initiative for improved altimeter products in coastal zone, PISTACH, Accessed 1 October 2009
  28. Raney RK (1998) The delay Doppler radar altimeter. IEEE Trans Geosci Remote Sensing 36:1578–1588CrossRefGoogle Scholar
  29. Rosmorduc V, Benveniste J, Lauret O, Maheu C, Milagro MP, Picot N (2009) Radar altimetry tutorial. In: Benveniste J, Picot N (eds) Accessed 1 October 2009
  30. Sailor RV, LeSchack AR (1987) Preliminary determination of the GEOSAT radar altimeter noise spectrum, Johns Hopkins APL Tech. Digest 8:182–183Google Scholar
  31. Smith WH, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962Google Scholar
  32. Special Topex/Poseidon issue: Scientific results (1995) J Geophy Res 100:C12Google Scholar
  33. Stanley HR (1979) The GEOS-3 project. J Geophys Res 84:3779–3783Google Scholar
  34. SWOT Science requirements documents (2009) NASA/JPL. URL: Accessed on 04 September 2009
  35. Tapley BD, Born GH, Parke ME (1982) The SEASAT altimeter data and its accuracy assessment. J Geophys Res 87:3179–3188CrossRefGoogle Scholar
  36. Townsend WF (1980) An initial assessment of the performance achieved by the SEASAT altimeter. IEEE J Ocean Eng, OE5, 80–92Google Scholar
  37. Wilson S, Parisot F (2008) Report of CEOS ocean surface topography constellation strategic workshop, Assmannshausen, 29–31 January 2008, EUMETSAT Report E.02, vol. 2, 4ppGoogle Scholar
  38. Wilson S, Parisot F, Escudier P, Fellous JL, Benveniste J, Bonekamp H, Drinkwater M, Fu L-L, Jacobs G, Lin M, Lindstrom E, Miller L, Sharma R, Thouvenot E (2010) Ocean surface topography constellation: the next 15 years in satellite altimetry. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 September 2009, ESA Publication WPP-306. doi:10.5270/OceanObs09.cwp.94. See also Accessed on 1 October 2009
  39. Wingham DJ, Francis CR, Baker S, Bouzinac C, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U, Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis D (2006) CryoSat: a mission to determine the fluctuations in earth’s land and marine ice fields. Adv Space Res 37:841–871CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Directorate of Earth Observation Programmes, Earth Observation Science, Applications and Future Technologies DepartmentEuropean Space Agency – ESRINFrascati (Rome)Italy

Personalised recommendations