Recent Developments in Optimal Power Flow Modeling Techniques

  • Rabih A. Jabr
Part of the Energy Systems book series (ENERGY)


This article discusses recent advances in mathematical modeling techniques of transmission networks and control devices within the scope of optimal power flow (OPF) implementations. Emphasis is on the newly proposed concept of representing meshed power networks using an extended conic quadratic (ECQ) model and its amenability to solution by using interior-point codes. Modeling of both classical power control devices and modern unified power flow controller (UPFC) technology is described in relation to the ECQ network format. Applications of OPF including economic dispatching, loss minimization, constrained power flow solutions, and transfer capability computation are presented. Numerical examples that can serve as testing benchmarks for future software developments are reported on a sample test network.


Economic dispatching Interior-point methods Load flow control Loss minimization Nonlinear programming Optimization methods Transfer capability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acha E, Fuerte-Esquivel CR, Ambriz-Pérez H, Angeles-Camacho C (2004) FACTS: modeling and simulation in power networks. Wiley, ChichesterCrossRefGoogle Scholar
  2. Ajjarapu V, Christy C (1992) The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans Power Syst 7(1):416–423CrossRefGoogle Scholar
  3. Alsac O, Bright J, Prais M, Stott B (1990) Further developments in LP-based optimal power flow. IEEE Trans Power Syst 5(3):697–711CrossRefGoogle Scholar
  4. Alsac O, Stott B (1974) Optimal load flow with steady-state security. IEEE Trans Power App Syst 93(3):745–751CrossRefGoogle Scholar
  5. Ambriz-Pérez H, Acha E, Fuerte-Esquivel CR, De la Torre A (1998) Incorporation of a UPFC model in an optimal power flow using Newton’s method. IEE Proc- Gener Transm Distrib 145(3):336–344CrossRefGoogle Scholar
  6. Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236CrossRefGoogle Scholar
  7. Belegundu AD, Chandrupatla TR (1999) Optimization concepts and applications in engineering. Prentice Hall, New JerseyzbMATHGoogle Scholar
  8. British Electricity International (1991) Modern power station practice, vol. L: system operation. Pergamon, OxfordGoogle Scholar
  9. Burchett RC, Happ HH, Vierath DR (1984) Quadratically convergent optimal power flow. IEEE Trans Power App Syst 103(11):3267–3275CrossRefGoogle Scholar
  10. Cañizares CA, Alvarado FL (1993) Point of collapse and continuation methods for large AC/DC systems. IEEE Trans Power Syst 8(1):1–8CrossRefGoogle Scholar
  11. Capitanescu F, Glavic M, Ernst D, Wehenkel L (2007) Interior-point based algorithms for the solution of optimal power flow problems. Elec Power Syst Res 77(5–6):508–517CrossRefGoogle Scholar
  12. Carpentier J (1962) Contribution a l’étude du dispatching économique. Ser. 8: Bulletin de la Société Française des Electriciens 3:431–447Google Scholar
  13. Chebbo AM, Irving MR (1995) Combined active and reactive dispatch - part 1: problem formulation and solution algorithms. IEE Proc- Gener Transm Distrib 142(4):393–400CrossRefGoogle Scholar
  14. Dai Y, McCalley JD, Vittal V (2000) Simplification, expansion and enhancement of direct interior point algorithm for power system maximum loadability. IEEE Trans Power Syst 15(3): 1014–1021CrossRefGoogle Scholar
  15. Debs AS (1988) Modern power systems control and operation. Kluwer, BostonGoogle Scholar
  16. Ejebe GC, Waight JG, Santos-Nieto M, Tinney WF (2000) Fast calculation of linear available transfer capability. IEEE Trans Power Syst 15(3):1112–1116CrossRefGoogle Scholar
  17. Freris LL, Sasson AM (1968) Investigation of the load-flow problem. IEE Proc 115(10):1459–1470Google Scholar
  18. Fuerte-Esquivel CR, Acha E (1997) Unified power flow controller: a critical comparison of Newton-Raphson UPFC algorithms in power flow studies. IEE Proc- Gener Transm Distrib 144(5):437–444CrossRefGoogle Scholar
  19. Fuerte-Esquivel CR, Acha E, Ambriz-Pérez H (2000) A comprehensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Trans Power Syst 15(1):102–109CrossRefGoogle Scholar
  20. Gao B, Morison GK, Kundur P (1996) Towards the development of a systematic approach for voltage stability assessment of large-scale power systems. IEEE Trans Power Syst 11(3): 1314–1324CrossRefGoogle Scholar
  21. Grainger JJ, Stevenson WD Jr (1994) Power system analysis. McGraw-Hill, New YorkGoogle Scholar
  22. Granville S (1994) Optimal reactive dispatch through interior-point methods. IEEE Trans Power Syst 9(1):136–146CrossRefGoogle Scholar
  23. Gyugyi L (1992) Unified power-flow control concept for flexible AC transmission systems. IEE Proc- Gener Transm Distrib 139(4):323–331CrossRefGoogle Scholar
  24. Hamoud, G (2000) Assessment of available transfer capability of transmission systems. IEEE Trans Power Syst 15(1):27–32CrossRefGoogle Scholar
  25. Handschin E, Lehmköster C (1999) Optimal power flow for deregulated systems with FACTS devices. Proc 13th PSCC 2:1270–1276Google Scholar
  26. Irisarri GD, Wang X, Tong J, Mokhtari S (1997) Maximum loadability of power systems using interior point non-linear optimization method. IEEE Trans Power Syst 12(1):162–172CrossRefGoogle Scholar
  27. Jabr RA (2003) A primal-dual interior-point method to solve the optimal power flow dispatching problem. Optim Eng 4(4):309–336zbMATHCrossRefMathSciNetGoogle Scholar
  28. Jabr RA (2005) Primal-dual interior-point approach to compute the L 1 solution of the state estimation problem. IEE Proc- Gener Transm Distrib 152(3):313–320CrossRefGoogle Scholar
  29. Jabr RA (2007) A conic quadratic format for the load flow equations of meshed networks. IEEE Trans Power Syst 22(4):2285–2286CrossRefGoogle Scholar
  30. Jabr RA (2008) Optimal power flow using an extended conic quadratic formulation. IEEE Trans Power Syst 23(3):1000–1008CrossRefGoogle Scholar
  31. Jabr RA, Pal BC (2008) AC network state estimation using linear measurement functions. IET Gener Transm Distrib 2(1):1–6CrossRefGoogle Scholar
  32. Lai LL, Sinha N (2008) Genetic algorithms for solving optimal power flow problems. In Lee KY, El-Sharkawi MA (ed) Modern heuristic optimization techniques: theory and applications to power systems. Wiley, New JerseyGoogle Scholar
  33. Lehmköster C (2002) Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Trans Power Deliv 17(2):603–608CrossRefGoogle Scholar
  34. Lin SY, Ho YC, Lin CH (2004) An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables. IEEE Trans Power Syst 19(1): 276–286CrossRefGoogle Scholar
  35. Min W, Shengsong L (2005) A trust region interior point algorithm for optimal power flow problems. Elec Power Energy Syst 27(4):293–300CrossRefGoogle Scholar
  36. North American Electric Reliability Council (1995) Transmission transfer capability. Available
  37. Rider MJ, Paucar VL, Garcia AV (2004) Enhanced higher-order interior-point method to minimise active power losses in electric energy systems. IEE Proc- Gener Transm Distrib 151(4):517–525CrossRefGoogle Scholar
  38. Ruíz Muñoz JM, Gómez Expósito A (1992) A line-current measurement based state estimator. IEEE Trans Power Syst 7(2):513–519CrossRefGoogle Scholar
  39. Saadat H (1999) Power system analysis. McGraw-Hill, SingaporeGoogle Scholar
  40. Salgado R, Brameller A, Aitchison P (1990) Optimal power flow solutions using the projection method - part 1: theoretical basis. IEE Proc- Gener Transm Distrib 137(6):424–428CrossRefGoogle Scholar
  41. Sterling, MJH (1978) Power system control. Peregrinus for the IEE, StevenageGoogle Scholar
  42. Sun DI, Ashley B, Brewer B, Hughes A, Tinney WF (1984) Optimal power flow by Newton approach. IEEE Trans Power App Syst 103(10):2864–2880CrossRefGoogle Scholar
  43. Torres GL, Quintana VH (1998) An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans Power Syst 13(4):1211–1218CrossRefGoogle Scholar
  44. Torres GL, Quintana VH (2001) On a nonlinear multiple-centrality-corrections interior-point method for optimal power flow. IEEE Trans Power Syst 16(2):222–228CrossRefGoogle Scholar
  45. Tosovic LB (1973) Some experiments on sparse sets of linear equations. SIAM J App Math 25(2):142–148zbMATHCrossRefMathSciNetGoogle Scholar
  46. Wang H, Murillo-Sánchez CE, Zimmerman RD, Thomas RJ (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193CrossRefGoogle Scholar
  47. Wei H, Sasaki H, Kubokawa J, Yokoyama R (1998) An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst 13(3): 870–877CrossRefGoogle Scholar
  48. Wood AJ, Wollenberg BF (1996) Power generation, operation, and control. Wiley, New YorkGoogle Scholar
  49. Wright SJ (1997) Primal dual interior point methods. SIAM, PhiladelphiazbMATHGoogle Scholar
  50. Wu YC, Debs AS, Marsten RE (1994) A direct nonlinear predictor-corrector primal-dual interior-point algorithm for optimal power flows. IEEE Trans Power Syst 9(2):876–883CrossRefGoogle Scholar
  51. Xiao Y, Song YH, Liu CC, Sun YZ (2003) Available transfer capability enhancement using FACTS devices. IEEE Trans Power Syst 18(1):305–312CrossRefGoogle Scholar
  52. Xiao Y, Song YH, Sun YZ (2002) Power flow control approach to power systems with embedded FACTS devices. IEEE Trans Power Syst 17(4):943–950CrossRefGoogle Scholar
  53. Zhang XP (2005) Transfer capability computation with security constraints. Proc 15th PSCC, Available
  54. Zhang XP, Handschin E (2001) Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc- Gener Transm Distrib 148(5):489–496CrossRefGoogle Scholar
  55. Zhang XP, Handschin E (2002) Transfer capability computation of power systems with comprehensive modeling of FACTS controllers. Proc 14th PSCC, Available
  56. Zhang XP, Petoussis SG, Godfrey KR (2005) Nonlinear interior-point optimal power flow method based on a current mismatch formulation. IEE Proc- Gener Transm Distrib 152(6):795–805CrossRefGoogle Scholar
  57. Zhang XP, Rehtanz C, Pal B (2006) Flexible AC transmission systems – modelling and control. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAmerican University of BeirutBeirutLebanon

Personalised recommendations