Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

  • Bogdan Paşaniuc
  • Noah Zaitlen
  • Eran Halperin
Conference paper

DOI: 10.1007/978-3-642-12683-3_26

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)
Cite this paper as:
Paşaniuc B., Zaitlen N., Halperin E. (2010) Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments. In: Berger B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science, vol 6044. Springer, Berlin, Heidelberg

Abstract

Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bogdan Paşaniuc
    • 1
  • Noah Zaitlen
    • 2
    • 3
  • Eran Halperin
    • 1
    • 2
    • 3
  1. 1.International Computer Science InstituteBerkeley
  2. 2.Molecular Microbiology and Biotechnology DepartmentTel-Aviv University 
  3. 3.The Blavatnik School of Computer ScienceTel-Aviv University 

Personalised recommendations