Advertisement

On the Genealogy of Asexual Diploids

  • Fumei Lam
  • Charles H. Langley
  • Yun S. Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)

Abstract

Given molecular genetic data from diploid individuals that, at present, reproduce mostly or exclusively asexually without recombination, an important problem in evolutionary biology is detecting evidence of past sexual reproduction (i.e., meiosis and mating) and recombination (both meiotic and mitotic). However, currently there is a lack of computational tools for carrying out such a study. In this paper, we formulate a new problem of reconstructing diploid genealogies under the assumption of no sexual reproduction or recombination, with the ultimate goal being to devise genealogy-based tools for testing deviation from these assumptions. We first consider the infinite-sites model of mutation and develop linear-time algorithms to test the existence of an asexual diploid genealogy compatible with the infinite-sites model of mutation, and to construct one if it exists. Then, we relax the infinite-sites assumption and develop an integer linear programming formulation to reconstruct asexual diploid genealogies with the minimum number of homoplasy (back or recurrent mutation) events. We apply our algorithms on simulated data sets with sizes of biological interest.

Keywords

Sexual Reproduction Steiner Tree Steiner Tree Problem Minimum Steiner Tree Diploid Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Computing 23, 1216–1224 (1994)MATHCrossRefGoogle Scholar
  2. 2.
    Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. J. Comput. Biol. 10, 323–340 (2003)CrossRefGoogle Scholar
  3. 3.
    Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human populations using median networks. Genetics, 743–753 (1989)Google Scholar
  4. 4.
    Barton, N.H., Charlesworth, B.: Why sex and recombination? Science 281, 1986–1990 (1998)CrossRefGoogle Scholar
  5. 5.
    Birky Jr., C.W.: Bdelloid rotifers revisited. Proc. Nat. Acad. Sci. 101, 2651–2652 (2004)CrossRefGoogle Scholar
  6. 6.
    Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson., F., et al. (eds.) Mathematics in the Archeological and Historical Sciences, pp. 387–395. Edinburgh University Press (1971)Google Scholar
  7. 7.
    Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 585–600. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure via perfect phylogeny. J. Bioinf. Comput. Biol. 1, 1–20 (2003)CrossRefGoogle Scholar
  9. 9.
    Fernandez-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect phylogeny. SIAM Journal on Computing 32, 1115–1127 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fontaneto, D., Herniou, E.A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., Barraclough, T.G.: Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5(4), e87 (2007)Google Scholar
  11. 11.
    Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3(43-49), 299 (1982)MathSciNetGoogle Scholar
  12. 12.
    Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U., Shapiro, E.: Genomic variability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1(5), e50 (2005)Google Scholar
  13. 13.
    Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proc. 6th Annual Intl. Conf. on Research in Computational Molecular Biology (RECOMB), pp. 166–175 (2002)Google Scholar
  15. 15.
    Gusfield, D.: Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with constrained recombination. J. Comput. Sys. Sci. 70, 381–398 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinf. Comput. Biol. 2, 173–213 (2004)CrossRefGoogle Scholar
  17. 17.
    Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using Imperfect Phylogeny. Bioinformatics 20, 1842–1849 (2004)CrossRefGoogle Scholar
  18. 18.
    Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.-K.: Constructing a smallest refining galled phylogenetic network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 265–280. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Judson, P.O., Normark, B.B.: Ancient asexual scandals. Trends Ecol. Evol. 11, 41–46 (1996)CrossRefGoogle Scholar
  20. 20.
    Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. SIAM J. Computing 26, 1749–1763 (1997)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Keightley, P.D., Otto, S.P.: Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443, 89–92 (2006)CrossRefGoogle Scholar
  22. 22.
    Lunt, D.: Genetic tests of ancient asexuality in root knot nematodes reveal recent hybrid origins. BMC Evolutionary Biology 8, 194 (2008)CrossRefGoogle Scholar
  23. 23.
    Mark Welch, D., Meselson, M.: Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000)CrossRefGoogle Scholar
  24. 24.
    Martens, K., Rossetti, G., Horne, D.J.: How ancient are ancient asexuals? Proc. R. Soc. London B 270, 723–729 (2003)CrossRefGoogle Scholar
  25. 25.
    Maynard Smith, J.: The Evolution of Sex. Cambridge University Press, Cambridge (1978)Google Scholar
  26. 26.
    Maynard Smith, J.: Contemplating life without sex. Nature 324, 300–301 (1986)CrossRefGoogle Scholar
  27. 27.
    Nakhleh, L., Warnow, T., Linder, C.: Reconstructing reticulate evolution in species – theory and practice. In: Proc. 8th Annual Intl. Conf. on Research in Computational Molecular Biology (RECOMB), pp. 337–346 (2004)Google Scholar
  28. 28.
    Schön, I., Martens, K.: No slave to sex. Proc. R. Soc. London B 270, 827–833 (2003)CrossRefGoogle Scholar
  29. 29.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  30. 30.
    Sridhar, S., Blelloch, G.E., Ravi, R., Schwartz, R.: Optimal imperfect phylogeny reconstruction and haplotyping. In: Proceedings of Computational Systems Bioinformatics, pp. 199–210 (2006)Google Scholar
  31. 31.
    Sridhar, S., Dhamdhere, K., Blelloch, G.E., Halperin, E., Ravi, R., Schwartz, R.: Simple reconstruction of binary near-perfect phylogenetic trees. In: Proceedings of International Workshop on Bioinformatics Research and Applications, pp. 799–806 (2006)Google Scholar
  32. 32.
    Sridhar, S., Lam, F., Blelloch, G.E., Ravi, R., Schwartz, R.: Efficiently finding the most parsimonious phylogenetic tree via linear programming. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 37–48. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Vijayasatya, R., Mukherjee, A.: An efficient algorithm for perfect phylogeny haplotyping. In: Proc. IEEE Comput. Syst. Bioinform. Conf., pp. 103–110 (2005)Google Scholar
  34. 34.
    Waggoner, B.M., Poinar Jr., G.O.: Fossil habrotrochid rotifers in Dominican amber. Experientia 49(4), 354–357 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fumei Lam
    • 1
  • Charles H. Langley
    • 2
  • Yun S. Song
    • 3
    • 4
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavisUSA
  2. 2.Section of Evolution and EcologyUniversity of CaliforniaDavisUSA
  3. 3.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of StatisticsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations