A New Algorithm for Improving the Resolution of Cryo-EM Density Maps

  • Michael Hirsch
  • Bernhard Schölkopf
  • Michael Habeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)


Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this paper, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters, therefore our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.


Nonnegative Matrix Factorization Blind Deconvolution Bluetongue Virus Blur Kernel IEEE Signal Processing Magazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frank, J.: Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys Biomol. Struct. 31, 303–319 (2002)CrossRefGoogle Scholar
  2. 2.
    Orlova, E.V., Saibil, H.R.: Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs. Curr. Opin. Struct. Biol. 14, 584–590 (2004)CrossRefGoogle Scholar
  3. 3.
    Chiu, W., Baker, M.L., Jiang, W., Dougherty, M., Schmid, M.F.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372 (2005)CrossRefGoogle Scholar
  4. 4.
    Brünger, A.T.: Low-resolution crystallography is coming of age. Structure 13, 171–172 (2005)CrossRefGoogle Scholar
  5. 5.
    DeLaBarre, B., Brunger, A.T.: Considerations for the refinement of low-resolution crystal structures. Acta Crystallographica D 62, 923–932 (2006)Google Scholar
  6. 6.
    Rosenthal, P.B., Henderson, R.: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003)CrossRefGoogle Scholar
  7. 7.
    Fernández, J.J., Luque, D., Castón, J.R., Carrascosa, J.L.: Sharpening high resolution information in single particle electron cryomicroscopy. J. Struct. Biol. 164, 170–175 (2008)CrossRefGoogle Scholar
  8. 8.
    Sha, F., Lin, Y., Saul, L.K., Lee, D.D.: Multiplicative Updates for Nonnegative Quadratic Programming. Neural Comput. 19(8), 2004–2031 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kundur, D., Hatzinakos, D.: Blind Image Deconvolution. IEEE Signal Processing Magazine 13, 43–64 (1996)CrossRefGoogle Scholar
  10. 10.
    Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in Astronomy: A Review. The Publications of the Astronomical Society of the Pacific 114, 1051–1069 (2002)CrossRefGoogle Scholar
  11. 11.
    Sarder, P., Nehorai, A.: Deconvolution methods for 3-d fluorescence microscopy images. IEEE Signal Processing Magazine 23(3), 32–45 (2006)CrossRefGoogle Scholar
  12. 12.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision & Pattern Recognition (2009)Google Scholar
  13. 13.
    Johnston, R.A., Connolly, T.J., Lane, R.G.: An improved method for deconvolving a positive image. Optics Communications 181, 267–278 (2000)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  15. 15.
    Mackay, D.J.C.: Hyperparameters: Optimize, or integrate out? In: Maximum Entroy and Bayesian Methods, pp.43–59 (1996)Google Scholar
  16. 16.
    Molina, R., Mateos, J., Katsaggelos, A.K.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transactions on Image Processing 15, 3715–3727 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lin, Y., Lee, D.D.: Bayesian regularization and nonnegative deconvolution for time delay estimation. In: NIPS, pp. 809–816 (2005)Google Scholar
  18. 18.
    Jin, B., Zou, J.: Augmented Tikhonov regularization. Inverse Problems 25(2), 025001 (2009)Google Scholar
  19. 19.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics, SIGGRAPH (2008)Google Scholar
  20. 20.
    Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)CrossRefGoogle Scholar
  21. 21.
    Grimes, J.M., Burroughs, J.N., Gouet, P., Diprose, J.M., Malby, R., Ziéntara, S., Mertens, P.P.C., Stuart, D.I.: The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998)CrossRefGoogle Scholar
  22. 22.
    Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the Information Gap: Computational Tools for Intermediate Resolution Structure Interpretation. Journal of Molecular Biology 308, 1033–1044 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Hirsch
    • 1
  • Bernhard Schölkopf
    • 1
  • Michael Habeck
    • 1
    • 2
  1. 1.Max-Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Max-Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations