Advertisement

Flexible Group Key Exchange with On-demand Computation of Subgroup Keys

  • Michel Abdalla
  • Céline Chevalier
  • Mark Manulis
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

Modern multi-user communication systems, including popular instant messaging tools, social network platforms, and cooperative-work applications, offer flexible forms of communication and exchange of data. At any time point concurrent communication sessions involving different subsets of users can be invoked. The traditional tool for achieving security in a multi-party communication environment are group key exchange (GKE) protocols that provide participants with a secure group key for their subsequent communication. Yet, in communication scenarios where various user subsets may be involved in different sessions the deployment of classical GKE protocols has clear performance and scalability limitations as each new session should be preceded by a separate execution of the protocol. The motivation of this work is to study the possibility of designing more flexible GKE protocols allowing not only the computation of a group key for some initial set of users but also efficient derivation of independent secret keys for all potential subsets. In particular we improve and generalize the recently introduced GKE protocols enabling on-demand derivation of peer-to-peer keys (so called GKE+P protocols). We show how a group of users can agree on a secret group key while obtaining some additional information that they can use on-demand to efficiently compute independent secret keys for any possible subgroup. Our security analysis relies on the Gap Diffie-Hellman assumption and uses random oracles.

Keywords

Random Oracle Group Stage Subgroup Stage Random Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: (Password) Authenticated Key Establishment: From 2-Party to Group. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 499–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-Based Group Key Exchange in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Chevalier, C., Manulis, M., Pointcheval, D.: Flexible Group Key Exchange with On-Demand Computation of Subgroup Keys. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 359–376. Springer, Heidelberg (2010); Full version available from the web page of the authorsGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Biswas, G.P.: Diffie-Hellman Technique: Extended to Multiple Two-Party Keys and One Multi-Party Key. IET Inf. Sec. 2(1), 12–18 (2008)CrossRefGoogle Scholar
  6. 6.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenticated Group Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255–264. ACM, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Bresson, E., Manulis, M.: Malicious Participants in Group Key Exchange: Key Control and Contributiveness in the Shadow of Trust. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 395–409. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bresson, E., Manulis, M.: Contributory Group Key Exchange in the Presence of Malicious Participants. IET Inf. Sec. 2(3), 85–93 (2008)CrossRefGoogle Scholar
  12. 12.
    Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In: ACM ASIACCS 2008, pp. 249–260. ACM Press, New York (2008)Google Scholar
  13. 13.
    Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group Key Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Desmedt, Y., Lange, T.: Revisiting Pairing Based Group Key Exchange. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 53–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Tran. on Inf. Th. 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling Key Compromise Impersonation Attacks on Group Key Exchange Protocols. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Ingemarsson, I., Tang, D.T., Wong, C.K.: A Conference Key Distribution System. IEEE Tran. on Inf. Th. 28(5), 714–719 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Jeong, I.R., Lee, D.H.: Parallel Key Exchange. J. of Univ. Comp. Sci. 14(3), 377–396 (2008)MathSciNetGoogle Scholar
  22. 22.
    Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols. In: ACM CCS 2005, pp. 180–189. ACM Press, New York (2005)CrossRefGoogle Scholar
  23. 23.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)Google Scholar
  24. 24.
    Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Kim, Y., Perrig, A., Tsudik, G.: Group Key Agreement Efficient in Communication. IEEE Tran. on Comp. 53(7), 905–921 (2004)CrossRefGoogle Scholar
  26. 26.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Trans. on Inf. and Syst. Sec. 7(1), 60–96 (2004)CrossRefGoogle Scholar
  27. 27.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Manulis, M.: Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 1–19. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Manulis, M.: Security-Focused Survey on Group Key Exchange Protocols. Cryptology ePrint Archive, Report 2006/395 (2006)Google Scholar
  30. 30.
    Mayer, A., Yung, M.: Secure Protocol Transformation via “Expansion”: From Two-Party to Groups. In: ACM CCS 1999, pp. 83–92. ACM Press, New York (1999)CrossRefGoogle Scholar
  31. 31.
    Nam, J., Paik, J., Kim, U.-M., Won, D.: Constant-Round Authenticated Group Key Exchange with Logarithmic Computation Complexity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 158–176. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A Secure Audio Teleconference System. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528. Springer, Heidelberg (1990)Google Scholar
  33. 33.
    Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group Communication. In: ACM CCS 1996, pp. 31–37. ACM Press, New York (1996)CrossRefGoogle Scholar
  34. 34.
    Wu, S., Zhu, Y.: Constant-Round Password-Based Authenticated Key Exchange Protocol for Dynamic Groups. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 69–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Céline Chevalier
    • 2
  • Mark Manulis
    • 3
  • David Pointcheval
    • 1
  1. 1.École Normale Supérieure, CNRS-INRIAParisFrance
  2. 2.Telecom ParisTechParisFrance
  3. 3.Department of Computer Science, TU Darmstadt & CASEDCryptographic Protocols GroupGermany

Personalised recommendations