A New RSA-Based Signature Scheme

  • Sven Schäge
  • Jörg Schwenk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

In this work we present a new and efficient hash-and-sign signature scheme in the standard model that is based on the RSA assumption. Technically it adapts the new proof techniques that are used to prove the recent RSA scheme by Hohenberger and Waters. In contrast to the Hohenberger-Waters scheme our scheme allows to sign blocks of messages and to issue signatures on committed values, two key properties required for building privacy preserving systems.

Keywords

digital signature schemes standard model RSA message blocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with rsa and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Communications Security, pp. 132–145. ACM, New York (2004)Google Scholar
  5. 5.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Cramer, R., Damgård, I.B.: New generation of secure and practical rsa-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA assumption. ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Fischlin, M.: The cramer-shoup strong-rsasignature scheme revisited. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the hash-and-sign paradigm. In: ACM Conference on Computer and Communications Security, pp. 20–27 (2001)Google Scholar
  23. 23.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rosser, B.: Explicit bounds for some functions of prime numbers. American Journal of Mathematics 63(1), 211–232 (1941)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhu, H.: New digital signature scheme attaining immunity to adaptive-chosen message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)Google Scholar
  26. 26.
    Zhu, H.: A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive, Report 2003/155 (2003), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sven Schäge
    • 1
  • Jörg Schwenk
    • 1
  1. 1.Horst Görtz Institute for IT-SecurityUniversity of BochumGermany

Personalised recommendations