Recruitment Framework for Participatory Sensing Data Collections

  • Sasank Reddy
  • Deborah Estrin
  • Mani Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)


Mobile phones have evolved from devices that are just used for voice and text communication to platforms that are able to capture and transmit a range of data types (image, audio, and location). The adoption of these increasingly capable devices by society has enabled a potentially pervasive sensing paradigm - participatory sensing. A coordinated participatory sensing system engages individuals carrying mobile phones to explore phenomena of interest using in situ data collection. For participatory sensing to succeed, several technical challenges need to be solved. In this paper, we discuss one particular issue: developing a recruitment framework to enable organizers to identify well-suited participants for data collections based on geographic and temporal availability as well as participation habits. This recruitment system is evaluated through a series of pilot data collections where volunteers explored sustainable processes on a university campus.


Mobile Computing Participatory Sensing Urban Sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R.: People-centric urban sensing. In: Proceedings of WiCOM, pp. 18–32. IEEE, Los Alamitos (2006)Google Scholar
  2. 2.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.: Participatory sensing. In: Proceedings of WSW, pp. 1–5. ACM, New York (2006)Google Scholar
  3. 3.
    Paulos, E., Honicky, R., Hooker, B.: Citizen Science: Enabling Participatory Urbanism. In: Urban Informatics: The Practice and Promise of the Real-time City (2008)Google Scholar
  4. 4.
    Shallwani, S., Mohammed, S.: Community-based participatory research: Training Manual for Community-Based Researchers. Aga Khan University (2007)Google Scholar
  5. 5.
    Cooper, C., Dickinson, J., Phillips, T., Bonney, R.: Citizen science as a tool for conservation in residential ecosystems. Ecology and Society 12(2), 11 (2007)Google Scholar
  6. 6.
    Lu, H., Lane, N., Eisenman, S., Campbell, A.: Bubble-sensing: Binding sensing tasks to the physical world. In: Pervasive and Mobile Computing (2009)Google Scholar
  7. 7.
    Gaonkar, S., Li, J., Choudhury, R., Cox, L., Schmidt, A.: Micro-blog: Sharing and querying content through mobile phones and social participation. In: Proceedings of Mobisys, pp. 174–186. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Reddy, S., Shilton, K., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using Context Annotated Mobility Profiles to Recruit Data Collectors in Participatory Sensing. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 52–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Paxton, M., Benford, S.: Experiences of participatory sensing in the wild. In: Proceedings of Ubicomp, pp. 265–274. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Shilton, K.: Four billion little brothers?: Privacy, mobile phones, and ubiquitous data collection. Communications of the ACM 52(11), 48–53 (2009)CrossRefGoogle Scholar
  11. 11.
    Hong, J., Landay, J.: An architecture for privacy-sensitive ubiquitous computing. In: Proceedings of Mobisys, pp. 177–189. ACM, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across users. In: Personal and Ubiquitous Computing, pp. 275–286 (2003)Google Scholar
  13. 13.
    Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In: Proceedings of Infocom, pp. 1–13. IEEE, Los Alamitos (2006)Google Scholar
  14. 14.
    Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personal gazetteers: an interactive clustering approach. In: Proceedings of GIS, pp. 266–273. ACM, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Liao, L., Fox, D., Kautz, H.: Location-based activity recognition using relational Markov networks. In: Proceedings of IJCAI. AAAI, Menlo Park (2005)Google Scholar
  16. 16.
    Bhattacharya, A., Das, S.: LeZi-update: an information-theoretic approach to track mobile users in PCS networks. In: Proceedings of Mobicom, pp. 1–12. ACM, New York (1999)Google Scholar
  17. 17.
    Soh, W., Kim, H.: Dynamic guard bandwidth scheme for wireless broadband networks. In: Proceedings of Infocom, pp. 572–581. IEEE, Los Alamitos (2001)Google Scholar
  18. 18.
    Hariharan, R., Toyama, K.: Project Lachesis: parsing and modeling location histories. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 106–124. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajectories. In: Proceedings of Ubicomp, pp. 243–260. ACM, New York (2006)Google Scholar
  20. 20.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)CrossRefGoogle Scholar
  21. 21.
    Lee, K., Hong, S., Kim, S., Rhee, I., Chong, S.: SLAW: A Mobility Model for Human Walks. In: Proceedings of Infocom, pp. 855–863. IEEE, Los Alamitos (2009)Google Scholar
  22. 22.
    Hsu, W., Dutta, D., Helmy, A.: CSI: A Paradigm for Behavior-oriented Delivery Services in Mobile Human Networks. ACM Transactions on Networking (2008)Google Scholar
  23. 23.
    Ghosh, J., Beal, M., Ngo, H., Qiao, C.: On profiling mobility and predicting locations of wireless users. In: Proceedings of REALMAN, pp. 55–62. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  24. 24.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)CrossRefGoogle Scholar
  25. 25.
    Schlosser, A., Voss, M., Bruckner, L.: Comparing and evaluating metrics for reputation systems by simulation. In: Proceedings of Trust in Agent Societies (2004)Google Scholar
  26. 26.
    eBay: The worlds marketplace,
  27. 27.
    Amazon: Online shopping center,
  28. 28.
    Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decision Support Systems 43(2), 618–644 (2007)CrossRefGoogle Scholar
  29. 29.
    SlashDot: News for nerds,
  30. 30.
    Ganeriwal, S., Balzano, L., Srivastava, M.: Reputation-based framework for high integrity sensor networks. ACM Transactions on Sensor Networks 4(3), 15 (2008)CrossRefGoogle Scholar
  31. 31.
    Jøsang, A., Ismail, R.: Beta reputation system. In: Bled eConference, pp. 324–337 (2002)Google Scholar
  32. 32.
    Howe, J.: The rise of crowdsourcing. Wired Magazine 14(6) (2006)Google Scholar
  33. 33.
    Amazon: Amazon mechanical turk,
  34. 34. Freelancer network,
  35. 35.
    Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks. In: Proceedings of ICC, pp. 472–476. IEEE, Los Alamitos (2001)Google Scholar
  36. 36.
    Kansal, A., Kaiser, W., Pottie, G., Srivastava, M., Sukhatme, G.: Reconfiguration methods for mobile sensor networks. ACM Transactions on Sensor Networks (2007)Google Scholar
  37. 37.
    Kapadia, A., Triandopoulos, N., Cornelius, C., Peebles, D., Kotz, D.: AnonySense: Opportunistic and privacy-preserving context collection. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) PERVASIVE 2008. LNCS, vol. 5013, pp. 280–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Krause, A., Horvitz, E., Kansal, A., Zhao, F.: Toward Community Sensing. In: Proceedings of IPSN, pp. 481–492. ACM, New York (2008)Google Scholar
  39. 39.
    Zheng, Y., Liu, L., Wang, L., Xie, X.: Understanding transportation mode based on GPS data for Web applications. ACM Transactions on the Web (2009)Google Scholar
  40. 40.
    Mun, M., Estrin, D., Burke, J., Hansen, M.: Parsimonious Mobility Classification using GSM and WiFi Traces. In: Proceedings of EmNets. IEEE, Los Alamitos (2008)Google Scholar
  41. 41.
    Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Determining transportation mode on mobile phones. In: Proceedings of ISWC, pp. 25–28. IEEE, Los Alamitos (2008)Google Scholar
  42. 42.
    Everytrail: Geotagging with everytrail,
  43. 43.
    FourSquare: Explore your city,
  44. 44.
    Kang, J., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. Mobile Computing and Communications Review 9(3), 58–68 (2005)CrossRefGoogle Scholar
  45. 45.
    Froehlich, J., Krumm, J.: Route prediction from trip observations. In: SAE (2008)Google Scholar
  46. 46.
    Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Information Processing Letters 70(1), 39–45 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions. Mathematical Programming 14(1), 265–294 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology 63(7), 1057–1066 (2009)CrossRefGoogle Scholar
  49. 49.
    Gonzalez, M., Hidalgo, C., Barabasi, A.: Understanding Individual Human Mobility Patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  50. 50.
    Teacy, W., Patel, J., Jennings, N., Luck, M.: Coping with inaccurate reputation sources. In: Proceedings of AAMAS, pp. 997–1004. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sasank Reddy
    • 1
  • Deborah Estrin
    • 1
  • Mani Srivastava
    • 1
  1. 1.Center for Embedded Networked SensingUniversity of California at Los AngelesUSA

Personalised recommendations