Jog Falls: A Pervasive Healthcare Platform for Diabetes Management

  • Lama Nachman
  • Amit Baxi
  • Sangeeta Bhattacharya
  • Vivek Darera
  • Piyush Deshpande
  • Nagaraju Kodalapura
  • Vincent Mageshkumar
  • Satish Rath
  • Junaith Shahabdeen
  • Raviraja Acharya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)

Abstract

This paper presents Jog Falls, an end to end system to manage diabetes that blends activity and energy expenditure monitoring, diet-logging, and analysis of health data for patients and physicians. It describes the architectural details, sensing modalities, user interface and the physician’s backend portal. We show that the body wearable sensors accurately estimate the energy expenditure across a varied set of active and sedentary states through the fusion of heart rate and accelerometer data. The GUI ensures continuous engagement with the patient by showing the activity goals, current and past activity states and dietary records along with its nutritional values. The system also provides a comprehensive and unbiased view of the patient’s activity and food intake trends to the physician, hence increasing his/her effectiveness in coaching the patient. We conducted a user study using Jog Falls at Manipal University, a leading medical school in India. The study involved 15 participants, who used the system for 63 days. The results indicate a strong positive correlation between weight reduction and hours of use of the system.

Keywords

Personal Health Monitoring Diabetes Management Energy Expenditure Analysis Activity monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joshi, S.R., Parikh, R.M.: India – Diabetes Capital of the World: Now heading towards Hypertension. Journal of the Association of Physicians of India, 323–324 (2007)Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Consolvo, S., Klasnja, P., McDonald, D.W., Avrahami, D., Froehlich, J., LeGrand, L., Libby, R., Mosher, K., Landay, J.A.: Flowers or a Robot Army? Encouraging Awareness & Activity with Personal, Mobile Display. In: Proceedings of the 10th International conference on Ubiquitous computing, pp. 54–63 (2008)Google Scholar
  9. 9.
    Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J.A., Lester, J., Wyatt, D., Haehnel, D.: The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Computing 7(2), 32–41 (2008)CrossRefGoogle Scholar
  10. 10.
    Consolvo, S., Everitt, K., Smith, I., Landay, J.A.: Design requirements for technologies that encourage physical activity. In: 24th international conference on Human factors in computing systems, pp. 457–466 (2006)Google Scholar
  11. 11.
    Maitland, J., Sherwood, S., Barkhuus, L., Anderson, I., Hall, M., Brown, B., Chalmers, M., Muller, H.: Increasing the awareness of daily activity levels with pervasive computing. In: Pervasive Health, pp. 1–9 (2006)Google Scholar
  12. 12.
    Lin, J.J., Mamykina, L., Lindtner, S., Delajoux, G.: Fish’n Steps: encouraging physical activity with an interactive computer game. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 261–278. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Nutrition Vista, http://nutritionvista.com
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Mamykina, L., Mynatt, E., Davidson, P., Greenblatt, D.: MAHI: investigation of social scaffolding for reflective thinking in diabetes management. In: 26th international conference on Human factors in computing systems, pp. 477–486 (2008)Google Scholar
  18. 18.
  19. 19.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data Export. In: Pervasive Computing, pp. 1–17 (2004)Google Scholar
  20. 20.
    Brage, S., Brage, N.: Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J. Appl. Physiol. 96, 343–351 (2004)CrossRefGoogle Scholar
  21. 21.
    Locke, E.A., Latham, G.P.: A theory of goal setting and task performance. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  22. 22.
    MSP Platform description, http://seattle.intel-research.net/MSP
  23. 23.
  24. 24.
    Treuth, M.S., Adolph, A.L.: Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry. American Physiological Society 275, E12–E18 (1998)Google Scholar
  25. 25.
    Spurr, G.B., Goldberg, G.R.: Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry. American Journal of Clinical Nutrition 48, 552–559 (1988)Google Scholar
  26. 26.
    Ainsworth, B.E., Haskell, W.L., Whitt, M.C.: Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32, S498–S516 (2000)Google Scholar
  27. 27.
    Andre, D.: The Development of the SenseWear® armband, a Revolutionary Energy Assessment Device to Assess Physical Activity and Lifestyle. BodyMedia Inc. (2006)Google Scholar
  28. 28.
    Olgun, D., Pentland, A.: Human activity recognition: Accuracy across common locations for wearable sensors. In: Proceedings of the IEEE 10th International Symposium on Wearable Computing (Student Colloquium Proceedings) (2006)Google Scholar
  29. 29.
    Consolvo, S., McDonald, D.W., Landay, J.A.: Theory-Driven Design Strategies for Technologies that Support Behavior Change in Everyday Life. In: 27th international conference on Human factors in computing systems, Boston, MA, pp. 405–414 (2009)Google Scholar
  30. 30.
    Fogg, B.J.: Persuasive Technology: using computers to change what we think and do. Morgan Kaufmann Publishers, Boston (2003)Google Scholar
  31. 31.
    Intille, S.S.: A New Research Challenge: Persuasive Technology to Motivate Healthy Aging. IEEE Transactions on Information Technology in Biomedicine, 235–237 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lama Nachman
    • 1
  • Amit Baxi
    • 2
  • Sangeeta Bhattacharya
    • 2
  • Vivek Darera
    • 2
  • Piyush Deshpande
    • 2
  • Nagaraju Kodalapura
    • 2
  • Vincent Mageshkumar
    • 2
  • Satish Rath
    • 2
  • Junaith Shahabdeen
    • 1
  • Raviraja Acharya
    • 3
  1. 1.Intel LabsFuture Technology ResearchSanta Clara
  2. 2.Intel LabsFuture Technology ResearchBangaloreIndia
  3. 3.Kasturba Medical CollegeManipal UniversityManipalIndia

Personalised recommendations