Indoor Positioning Using GPS Revisited

  • Mikkel Baun Kjærgaard
  • Henrik Blunck
  • Torben Godsk
  • Thomas Toftkjær
  • Dan Lund Christensen
  • Kaj Grønbæk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)


It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS availability is good in many buildings with standard material walls and roofs. The measured root mean squared 2D positioning error was below five meters in wooden buildings and below ten meters in most of the investigated brick and concrete buildings. Lower accuracies, where observed, can be linked to either low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance within a given building is dependent on local properties like close-by building elements and materials, number of walls, number of overlaying stories and surrounding buildings.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angermann, M., Khider, M., Robertson, P.: Towards operational systems for continuous navigation of rescue teams. In: Proc. Position, Location and Navigation Symposium (2008)Google Scholar
  2. 2.
    Avila-Rodriguez, J.-A., Hein, G., Wallner, S., Issler, J.-L., Ries, L., Lestarquit, L., de Latour, A., Godet, J., Bastide, F., Pratt, T., Owen, J.: The mboc modulation. a final touch for the galileo frequency and signal plan. Inside GNSS 2(6), 43–58 (2007)Google Scholar
  3. 3.
    Blunck, H., Kjærgaard, M.B., Godsk, T., Toftkjær, T., Christensen, D.L., Grønbæk, K.: Empirical analysis and characterization of indoor gps signal fading and multipath conditions. In: Proc. 22nd Intl. Techn. Meeting Satellite Division Inst. of Navigation, ION GNSS (2009)Google Scholar
  4. 4.
    Brown, R., Hwang, P.Y.C.: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, 3rd edn. (1997)Google Scholar
  5. 5.
    Bullock, J., Floss, M., Geier, G., King, M.: Integration of gps with other sensors and network assistance. In: Kaplan, E.D., Hegarty, C. (eds.) Understanding GPS: Principles and Applications, ch. 9, 2nd edn. Artech House, Reading (2006)Google Scholar
  6. 6.
    Hein, G., Teuber, A., Thierfelder, H., Wolf, A.: Fighting the fading - part 2. Inside GNSS (2008)Google Scholar
  7. 7.
    Hilla, S.: Plotting pseudorange multipath with respect to satellite azimuth and elevation. GPS Solutions 8(1) (2004)Google Scholar
  8. 8.
    Kjærgaard, M.B.: A Taxonomy for Radio Location Fingerprinting. In: Proceedings of the Third International Symposium on Location and Context Awareness (2007)Google Scholar
  9. 9.
    Küpper, A.: Location-Based Services: Fundamentals and Operation, October 2005. Wiley, Chichester (2005)CrossRefGoogle Scholar
  10. 10.
    Lachapelle, G., Kuusniemi, H., Dao, D., MacGougan, G., Cannon, M.: HSGPS signal analysis and performance under various indoor conditions. Navigation, Inst. of Navigation 51(1), 29–43 (2004)Google Scholar
  11. 11.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Misra, P., Enge, P.: Global Positioning System: Signals, Measurements, and Performance. In: Navtech, 2nd edn. (2006)Google Scholar
  13. 13.
    Paonni, M., Kropp, V., Teuber, A., Hein, G.: A new statistical model of the indoor propagation channel for satellite navigation. In: Proc. 21st Intl. Techn. Meeting Satellite Division Inst. of Navigation, ION GNSS (2008)Google Scholar
  14. 14.
    Sokolova, N., Forssell, B.: Moderate pedestrian traffic: Indoor hsgps receiver performance. European Journal of Navigation 5(3), 2–7 (2007)Google Scholar
  15. 15.
    Stone, W.: Electromagnetic signal attenuation in construction materials. NIST Construction Automation Program Report No. 3, National Inst. Standards and Technology, U.S. (1997)Google Scholar
  16. 16.
    Teuber, A., Paonni, M., Kropp, V., Hein, G.: Galileo signal fading in an indoor environment. In: Proc. 21st Intl. Techn. Meeting Satellite Division Inst. of Navigation, ION GNSS (2008)Google Scholar
  17. 17.
    van Diggelen, F.: A-GPS: Assisted GPS, GNSS, and SBAS. Artech House (2009)Google Scholar
  18. 18.
    Watson, R., Lachapelle, G., Klukas, R., Turunen, S., Pietil, S., Halivaara, I.: Investigating gps signals indoors with extreme high-sensitivity detection techniques. Navigation, Inst. of Navigation 52(4), 199–213 (2006)Google Scholar
  19. 19.
    Williams, K., Greeley, R.: Radar attenuation by sand: laboratory measurements of radar transmission. IEEE Transactions Geoscience and Remote Sensing 39(11), 2521–2526 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mikkel Baun Kjærgaard
    • 1
  • Henrik Blunck
    • 1
  • Torben Godsk
    • 1
  • Thomas Toftkjær
    • 1
  • Dan Lund Christensen
    • 2
  • Kaj Grønbæk
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityDenmark
  2. 2.Alexandra Institute A/SDenmark

Personalised recommendations