Efficient Resource-Aware Hybrid Configuration of Distributed Pervasive Applications

  • Stephan Schuhmann
  • Klaus Herrmann
  • Kurt Rothermel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)

Abstract

As the size and complexity of Pervasive Computing environments increases, configuration and adaptation of distributed applications gains importance. These tasks require automated system support, since users must not be distracted by the (re-)composition of applications. In homogeneous ad hoc scenarios, relying on decentralized configuration schemes is obviously mandatory, while centralized approaches may help to reduce latencies in weakly heterogeneous infrastructure-based environments. However, in case of strongly heterogeneous pervasive environments including several resource-rich and resource-weak devices, both approaches may lead to suboptimal results concerning configuration latencies: While the resource-weak devices represent bottlenecks for decentralized configuration, the centralized approach faces the problem of not utilizing parallelism. Instead, a hybrid approach that involves only the subset of resource-rich devices is capable of rendering configuration and adaptation processes more efficiently. In this paper, we present such a resource-aware hybrid scheme that effectively reduces the time required for configuration processes. This is accomplished by a balanced-load clustering scheme that exploits the computational power of resource-rich devices, while avoiding bottlenecks in (re-)configurations. We present real-world evaluations which confirm that our approach reduces configuration latencies in heterogeneous environments by more than 30% compared to totally centralized and totally decentralized approaches. This is an important step towards seamless application configuration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amis, A.D., Prakash, R.: Load-Balancing Clusters in Wireless Ad Hoc Networks. In: Proc. IEEE Asset 2000 (2000)Google Scholar
  2. 2.
    Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J., Wollrath, A.: The Jini Specification. Addison Wesley, Reading (1999)Google Scholar
  3. 3.
    Barker, A., Weissman, J.B., van Hemert, J.: Eliminating The Middleman: Peer-to-Peer Dataflow. In: Proc. ACM HPDC 2008 (2008)Google Scholar
  4. 4.
    Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A Component System for Pervasive Computing. In: Proc. IEEE PerCom 2004 (2004)Google Scholar
  5. 5.
    Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web Services Composition. IEEE Internet Computing 7(1) (2003)Google Scholar
  6. 6.
    Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic Load Balancing on Web-server Systems. IEEE Internet Computing 3(3) (1999)Google Scholar
  7. 7.
    Chetan, S., Al-Muhtadi, J., Campbell, R., Mickunas, M.D.: Mobile Gaia: A Middleware for Ad-hoc Pervasive Computing. In: Proc. IEEE CCNC 2005 (2005)Google Scholar
  8. 8.
    Costa, P., et al.: The RUNES Middleware for Networked Embedded Systems and its Application in a Disaster Management Scenario. In: Proc. IEEE PerCom 2007 (2007)Google Scholar
  9. 9.
    Edwards, W.K., et al.: Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration. In: Proc. ACM CSCW 2002 (2002)Google Scholar
  10. 10.
    Ferscha, A., Hechinger, M., Mayrhofer, R., Oberhauser, R.: A Light-Weight Component Model for Peer-to-Peer Applications. In: Proc. ICDCS 2004 Workshops (2004)Google Scholar
  11. 11.
    Graupner, S., Andrzejak, A., Kotov, V.E., Trinks, H.: Adaptive Service Placement Algorithms for Autonomous Service Networks. In: Proc. ESOA 2004 (2004)Google Scholar
  12. 12.
    Grimm, R.: One.world: Experiences with a Pervasive Computing Architecture. IEEE Pervasive Computing 3(3) (2004)Google Scholar
  13. 13.
    Handte, M., Becker, C., Rothermel, K.: Peer-based Automatic Configuration of Pervasive Applications. In: Proc. IEEE ICPS 2005 (2005)Google Scholar
  14. 14.
    Handte, M., Urbanski, S., Becker, C., Reinhard, P., Engel, M., Smith, M.: 3PC/MarNET Pervasive Presenter. In: Proc. IEEE PerCom 2006 (2006)Google Scholar
  15. 15.
    Herrscher, D., Rothermel, K.: A Dynamic Network Scenario Emulation Tool. In: Proc. ICCCN 2002 (2002)Google Scholar
  16. 16.
    Jeronimo, M., Weast, J.: UPnP* Design by Example. Intel Press (2003)Google Scholar
  17. 17.
    Johanson, B., Fox, A., Winograd, T.: The Interactive Workspaces Project: Experiences with Ubiquitous Computing Rooms. IEEE Pervas. Computing 1(2) (2002)Google Scholar
  18. 18.
    Lee, C., Nordstedt, D., Helal, S.: Enabling Smart Spaces with OSGi. IEEE Pervasive Computing 2(3) (2003)Google Scholar
  19. 19.
    Liu, D., Law, K.H., Wiederhold, G.: Analysis of Integration Models for Service Composition. In: Proc. ACM WOSP 2002 (2002)Google Scholar
  20. 20.
    Newman, M.W., Elliott, A., Smith, T.F.: Providing an Integrated User Experience of Networked Media, Devices, and Services Through End-User Composition. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) PERVASIVE 2008. LNCS, vol. 5013, pp. 213–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Object Management Group (OMG): CORBA Component Model V3.0 (2002)Google Scholar
  22. 22.
    Ohta, T., Inoue, S., Kakuda, Y.: An Adaptive Multihop Clustering Scheme for Highly Mobile Ad Hoc Networks. In: Proc. IEEE ISADS 2003 (2003)Google Scholar
  23. 23.
    Paluska, J.M., Pham, H., Saif, U., Chau, G., Terman, C., Ward, S.: Structured Decomposition of Adaptive Applications. In: Proc. IEEE PerCom 2008 (2008)Google Scholar
  24. 24.
    Pering, T., Want, R., Rosario, B., Sud, S., Lyons, K.: Enabling Pervasive Collaboration with Platform Composition. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive Computing. LNCS, vol. 5538, pp. 184–201. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell, R.H., Mickunas, M.D.: Olympus: A High-Level Programming Model for Pervasive Computing Environments. In: Proc. IEEE PerCom 2005 (2005)Google Scholar
  26. 26.
    Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing 1(4) (2002)Google Scholar
  27. 27.
    Safa, H., Mirza, O., Artail, H.: A Dynamic Energy Efficient Clustering Algorithm for MANETs. In: Proc. IEEE WIMOB 2008 (2008)Google Scholar
  28. 28.
    Schuhmann, S., Herrmann, K., Rothermel, K.: Direct Backtracking: An Advanced Adaptation Algorithm for Pervasive Applications. In: Proc. ARCS (2008)Google Scholar
  29. 29.
    Schuhmann, S., Herrmann, K., Rothermel, K.: A Framework for Adapting the Distribution of Automatic Application Configuration. In: Proc. ACM ICPS 2008 (2008)Google Scholar
  30. 30.
    Song, X., Ramachandran, U.: MobiGo: A Middleware for Seamless Mobility. In: Proc. IEEE RTCSA 2007 (2007)Google Scholar
  31. 31.
    Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous Computing Environments. In: Proc. IEEE/IFIP WICSA (2002)Google Scholar
  32. 32.
    SUN Microsystems: Enterprise Java Beans Specification, Java Specification Request (JSR) 220 Final Release (2003), http://java.sun.com/products/ejb/docs.html
  33. 33.
    Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Transactions on Knowledge and Data Engineering 10(5) (1998)Google Scholar
  34. 34.
    Yu, J.Y., Chong, P.H.J.: A Survey of Clustering Schemes for Mobile Ad Hoc Networks. IEEE Communications Surveys and Tutorials 7(1) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stephan Schuhmann
    • 1
  • Klaus Herrmann
    • 1
  • Kurt Rothermel
    • 1
  1. 1.Institute of Parallel and Distributed Systems (IPVS)University of StuttgartStuttgartGermany

Personalised recommendations