The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events

  • Francesco Calabrese
  • Francisco C. Pereira
  • Giusy Di Lorenzo
  • Liang Liu
  • Carlo Ratti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)


This paper deals with the analysis of crowd mobility during special events. We analyze nearly 1 million cell-phone traces and associate their destinations with social events. We show that the origins of people attending an event are strongly correlated to the type of event, with implications in city management, since the knowledge of additive flows can be a critical information on which to take decisions about events management and congestion mitigation.


Pervasive Computing Home Location Zipcode Area Spatial Data Infrastructure Crowd Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Airsage: Airsage wise technology,
  2. 2.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P.S., Borriello, G., Schilit, B.N.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal Ubiquitous Computing 10(4), 255–268 (2006)CrossRefGoogle Scholar
  4. 4.
    Skolnik, J., Chami, R., Walker, M.: Planned Special Events - Economic Role and Congestion Effects. Federal Highway Administration, US-DOT (2008)Google Scholar
  5. 5.
    Alexiadis, V., Jeannotte, K., Chandra, A.: Traffic analysis tools primer, traffic analysis toolbox. Federal Highway Administration, US-DOT (2004)Google Scholar
  6. 6.
    Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Machine Vision and Applications (2008)Google Scholar
  7. 7.
    Kelly, J., Williams, P.W., Schieven, A., Dunn, I.: Toward a destination visitor attendance estimation model: Whistler, british columbia, canada. Journal of Travel Research (2006)Google Scholar
  8. 8.
    Davies, A., Yin, J., Velastin, S.: Crowd monitoring using image processing. Electron. Commun. Eng. J. 7(1) (1995)Google Scholar
  9. 9.
    Ratti, C., Pulselli, R.M., Williams, S., Frenchman, D.: Mobile landscapes: Using location data from cell-phones for urban analysis. Environment and Planning B: Planning and Design 33(5) (2006)Google Scholar
  10. 10.
    Reades, J., Calabrese, F., Sevtsuk, A., Ratti, C.: Cellular census: Explorations in urban data collection. IEEE Pervasive Computing 6(3), 30–38 (2007)CrossRefGoogle Scholar
  11. 11.
    Koshak, N., Fouda, A.: Analyzing pedestrian movement in mataf using gps and gis to support space redesign. In: The 9th International Conference on Design and Decision Support Systems in Architecture and Urban Planning (2008)Google Scholar
  12. 12.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453 (2008)Google Scholar
  13. 13.
    Girardin, F., Vaccari, A., Gerber, A., Ratti, C.: Quantifying urban attractiveness from the distribution and density of digital footprints. Journal of Spatial Data Infrastructures (4) (2009)Google Scholar
  14. 14.
    Ahas, R., Kuusik, A., Tiru, M.: Spatial and temporal variability of tourism loyalty in estonia: Mobile positioning perspective. In: Proceedings of the Nordic Geographers Meeting, NGM 2009 (2009)Google Scholar
  15. 15.
    Social force model for pedestrian dynamics. Phys. Rev. E 51(5) (1995)Google Scholar
  16. 16.
    Bellomo, N.: Modeling Crowds and Swarms: Congested and Panic Flows. In: Modeling Complex Living Systems (2008)Google Scholar
  17. 17.
    Banarjee, S., Grosan, C., Abarha, A.: Emotional ant based modeling of crowd dynamics. In: Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2005 (2005)Google Scholar
  18. 18.
    Bandini, S., Manzoni, S., Vizzari, G.: Crowd Behaviour Modeling: From Cellular Automata to Multi-Agent Systems. In: Multi-Agent Systems: Simulation and Applications. CRC Press, Boca Raton (2009)Google Scholar
  19. 19.
    Globe, B.: Events and things to do in boston (2009),
  20. 20.
    Gonzalez, M., Hidalgo, C., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  21. 21.
    Calabrese, F., Ratti, C.: Real time rome. Networks and Communications Studies 20(3-4), 247–258 (2006)Google Scholar
  22. 22.
    Calabrese, F., Ratti, C., Colonna, M., Lovisolo, P., Parata, D.: A system for real-time monitoring of urban mobility: a case study in rome. IEEE Transactions on Intelligent Transportation Systems (2009) (submitted)Google Scholar
  23. 23.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francesco Calabrese
    • 1
  • Francisco C. Pereira
    • 1
    • 2
  • Giusy Di Lorenzo
    • 1
  • Liang Liu
    • 1
  • Carlo Ratti
    • 1
  1. 1.MIT Senseable City LaboratoryCambridge
  2. 2.Centro de Informatica e Sistemas da Universidade de CoimbraCoimbraPortugal

Personalised recommendations