Active Capacitive Sensing: Exploring a New Wearable Sensing Modality for Activity Recognition

  • Jingyuan Cheng
  • Oliver Amft
  • Paul Lukowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)


The paper describes the concept, implementation, and evaluation of a new on-body capacitive sensing approach to derive activity related information. Using conductive textile based electrodes that are easy to integrate in garments, we measure changes in capacitance inside the human body. Such changes are related to motions and shape changes of muscle, skin, and other tissue, which can in turn be related to a broad range of activities and physiological parameters. We describe the physical principle, the analog hardware needed to acquire and pre-process the signal, and example signals from different body locations and actions. We perform quantitative evaluations of the recognition accuracy, focused on the specific example of collar-integrated electrodes and actions, such as chewing, swallowing, speaking, sighing (taking a deep breath), as well as different head motions and positions.


Activity Recognition Pervasive Computing Capacitive Sensing Breathing Cycle Wearable Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abowd, D., Dey, A., Orr, R., Brotherton, J.: Context-awareness in wearable and ubiquitous computing. Virtual Reality 3(3), 200–211 (1998)CrossRefGoogle Scholar
  2. 2.
    Amento, B., Hill, W., Terveen, L.: The sound of one hand: a wrist-mounted bio-acoustic fingertip gesture interface. In: Conference on Human Factors in Computing Systems, pp. 724–725. ACM, New York (2002)Google Scholar
  3. 3.
    Amft, O., Stager, M., Lukowicz, P., Troster, G.: Analysis of Chewing Sounds for Dietary Monitoring. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 56–72. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Amft, O., Junker, H., Lukowicz, P., Tröster, G., Schuster, C.: Sensing muscle activities with body-worn sensors. In: BSN 2006: Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, pp. 138–141. IEEE Press, Los Alamitos (2006)CrossRefGoogle Scholar
  5. 5.
    Amft, O., Tröster, G.: Methods for detection and classification of normal swallowing from muscle activation and sound. In: PHC 2006: Proceedings of the First International Conference on Pervasive Computing Technologies for Healthcare, ICST, pp. 1–10. IEEE digital library, Los Alamitos (2006)Google Scholar
  6. 6.
    Amft, O., Tröster, G.: Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine 42(2), 121–136 (2008)CrossRefGoogle Scholar
  7. 7.
    Amft, O., Tröster, G.: On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive Computing 8(2), 62–70 (2009)CrossRefGoogle Scholar
  8. 8.
    Aylward, R., Paradiso, J.: Sensemble: a wireless, compact, multi-user sensor system for interactive dance. In: Proceedings of the 2006 conference on New interfaces for musical expression, pp. 134–139. IRCAM—Centre Pompidou Paris, France (2006)Google Scholar
  9. 9.
    Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Bulling, A., Ward, J., Gellersen, H., Troster, G.: Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) PERVASIVE 2008. LNCS, vol. 5013, pp. 19–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Chavannes, N., Tay, R., Nikoloski, N., Kuster, N.: Suitability of FDTD-based TCAD tools RF design of mobile phones. IEEE Antennas and Propagation Magazine 45(6), 52–66 (2003)CrossRefGoogle Scholar
  12. 12.
    Cheng, J., Lukowicz, P.: Towards wearable capacitive sensing of physiological parameters. In: Second International Conference on Pervasive Computing Technologies for Healthcare, Pervasive Health 2008, pp. 272–273 (2008)Google Scholar
  13. 13.
    Dunne, L., Walsh, P., Smyth, B., Caulfield, B.: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture. In: 2006 10th IEEE International Symposium on Wearable Computers, pp. 65–68 (2006)Google Scholar
  14. 14.
    Farringdon, J., Moore, A., Tilbury, N., Church, J., Biemond, P.: Wearable Sensor Badge & Sensor Jacket for Context Awareness. In: Proceedings of the Third International Symposium on Wearable Computers, pp. 107–113 (1999)Google Scholar
  15. 15.
    Firmin, H., Reilly, S., Fourcin, A.: Non-invasive monitoring of reflexive swallowing. In: Speech, Hearing and Language: work in progress, vol. 10, Department of Phonetics and Linguistics. University College London, UCL (1997)Google Scholar
  16. 16.
    Gellersen, H., Schmidt, A., Beigl, M.: Multi-Sensor Context-Awareness in Mobile Devices and Smart Artifacts. Mobile Networks and Applications 7(5), 341–351 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Hurkmans, H.L.P., Bussmann, J.B.J., Benda, E., Verhaar, J.A.N., Stam, H.J.: Accuracy and repeatability of the pedar mobile system in long-term vertical force measurements. Gait & Posture 23(1), 118–125 (2006)CrossRefGoogle Scholar
  18. 18.
    Kern, N., Schiele, B., Schmidt, A.: Multi-sensor Activity Context Detection for Wearable Computing. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 220–232. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Lauterbach, C., Glaser, R., Savio, D., Schnell, M., Weber, W., Kornely, S., Stb’hr, A.: A Self-organizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network for Textile Applications. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 256–266. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Lopez, A., Richardson, P.: Capacitive electrocardiographic and bioelectric electrodes. IEEE Transactions on Biomedical Engineering, 99 (1969)Google Scholar
  22. 22.
    Lukowicz, P., Hanser, F., Szubski, C., Schobersberger, W.: Detecting and Interpreting Muscle Activity with Wearable Force Sensors. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 101–116. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Maurer, U., Rowe, A., Smailagic, A., Siewiorek, D.: eWatch: A Wearable Sensor and Notification Platform. In: Proceedings of the Int. Workshop on Wearable and Implantable Body Sensor Networks (2006)Google Scholar
  24. 24.
    Meyer, J., Lukowicz, P., Troster, G.: Textile Pressure Sensor for Muscle Activity and Motion Detection. In: Proceedings of the 10th IEEE International Symposium on Wearable Computers, pp. 69–72 (2006)Google Scholar
  25. 25.
    Michaelles, F., Wicki, R., Schiele, B.: Less Contact: Heart-rate detection without even touching the user. In: Proc. of the Eighth International Symposium on Wearable Computers, pp. 4–7. IEEE Computer Society, Washington (2004)CrossRefGoogle Scholar
  26. 26.
    Oum, J., Lee, S., Kim, D., Hong, S.: Non-contact heartbeat and respiration detector using capacitive sensor with Colpitts oscillator. Electr. Letters 44(2), 87–88 (2008)CrossRefGoogle Scholar
  27. 27.
    Ueno, A., Akabane, Y., Kato, T., Hoshino, H., Kataoka, S., Ishiyama, Y.: Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a preliminary study. IEEE Transactions on Biomedical Engineering 54(4), 759–766 (2007)CrossRefGoogle Scholar
  28. 28.
    Van Laerhoven, K., Cakmakci, O.: What shall we teach our pants? In: The Fourth International Symposium on Wearable Computers, pp. 77–83 (2000)Google Scholar
  29. 29.
    Warsito, W., Marashdeh, Q., Fan, L.: Electrical Capacitance Volume Tomography. IEEE Sensors Journal 7(4), 525 (2007)CrossRefGoogle Scholar
  30. 30.
    Wimmer, R., Holleis, P., Kranz, M., Schmidt, A.: Thracker-Using Capacitive Sensing for Gesture Recognition. In: Proceedings of the 26th IEEE International ConferenceWorkshops on Distributed Computing Systems. IEEE Computer Society, Washington (2006)Google Scholar
  31. 31.
    Zimmerman, T.G., Smith, J.R., Paradiso, J.A., Allport, D., Gershenfeld, N.: Applying electric field sensing to human-computer interfaces. In: CHI 1995: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 280–287. ACM Press/Addison-Wesley Publishing Co. (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jingyuan Cheng
    • 1
  • Oliver Amft
    • 2
  • Paul Lukowicz
    • 1
  1. 1.Embedded Systems LabUniversity of Passau 
  2. 2.Signal Processing SystemsTU Eindhoven 

Personalised recommendations