GasSense: Appliance-Level, Single-Point Sensing of Gas Activity in the Home

  • Gabe Cohn
  • Sidhant Gupta
  • Jon Froehlich
  • Eric Larson
  • Shwetak N. Patel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6030)


This paper presents GasSense, a low-cost, single-point sensing solution for automatically identifying gas use down to its source (e.g., water heater, furnace, fireplace). This work adds a complementary sensing solution to the growing body of work in infrastructure-mediated sensing. GasSense analyzes the acoustic response of a home’s government mandated gas regulator, which provides the unique capability of sensing both the individual appliance at which gas is currently being consumed as well as an estimate of the amount of gas flow. Our approach provides a number of appealing features including the ability to be easily and safely installed without the need of a professional. We deployed our solution in nine different homes and initial results show that GasSense has an average accuracy of 95.2% in identifying individual appliance usage.


Ubiquitous Computing Sustainability Sensing Gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ao, X., Matson, J., Kucmas, P., Khrakovsky, O., Li, X.: UltraSonic Clamp-On Flow Measurement of Natural Gas, Steam, and Compressed Air, (last accessed 10/16/2009)
  2. 2.
    Arroyo, E., Bonanni, L., Selker, T.: Waterbot: exploring feedback and persuasive techniques at the sink. In: CHI 2005, pp. 631–639. ACM, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Balasch, P.: National Gas and Electricity Costs and Impacts on Industry. National Energy Technology Laboratory, prepared for US Dept. of Energy, DOE/NETL-2008/1320 (2008)Google Scholar
  4. 4.
    Beckmann, C., Consolvo, S., LaMarca, A.: Some Assembly Required: Supporting End-User Sensor Installation in Domestic Ubiquitous Computing Environments. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 107–124. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Captor In-line Type Flow Meter, (last accessed 10/16/2009)
  6. 6.
    Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom Activity Monitoring Based on Sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Chicagoland Natural Gas Savings Program, (last accessed on 10/16/2009)
  8. 8.
    Fischer, C.: Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency 1, 79–104 (2008)CrossRefGoogle Scholar
  9. 9.
    Flanagan, J.: Speech analysis synthesis and perception. Springer, New York (1972)Google Scholar
  10. 10.
    Fogarty, J., Au, C., Hudson, S.E.: Sensing from the Basement: A Feasibility Study of Unobtrusive and Low-Cost Home Activity Recognition. In: UIST 2006, pp. 91–100 (2006)Google Scholar
  11. 11.
    Froehlich, J., Findlater, L., Landay, J.: The Design of Eco-Feedback Technology. In: CHI 2010 (to appear 2010)Google Scholar
  12. 12.
    Froehlich, J., Larson, E., Campbell, T., Haggerty, C., Fogarty, J., Patel, S.N.: HydroSense: infrastructure-mediated single-point sensing of whole-home water activity. In: UbiComp 2009, pp. 235–244 (2009) Google Scholar
  13. 13.
    Hirsch, T., Forlizzi, J., Hyder, E., Goetz, J., Kurtz, C., Stroback, J.: The ELDer Project: Social and Emotional Factors in the Design of Eldercare Technologies. In: Conference on Universal Usability, CUU 2000, pp. 29–72. ACM, New York (2000)Google Scholar
  14. 14.
    Kempton, W., Layne, L.: The Consumer’s Energy Analysis Environment. Energy Policy 22(10), 857–866 (1994)CrossRefGoogle Scholar
  15. 15.
    Kim, Y., Schmid, T., Charbiwala, Z.M., Friedman, J., Srivastava, M.B.: NAWMS: Non-Intrusive Autonomous Water Monitoring System. In: Conference on Embedded Network Sensor Systems, SenSys 2008, pp. 309–322. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Kim, Y., Schmid, T., Charbiwala, Z., Srivastava, M.B.: ViridiScope: design and implementation of a fine grained power monitoring system for homes. In: UbiComp 2009, pp. 245–254 (2009) Google Scholar
  17. 17.
    Natural Gas Conservation and Ratemaking Efficiency Act § 56-600 et seq. Virginia (2009)Google Scholar
  18. 18.
    Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    US Energy Information Administration, Using and Saving Energy in Homes, (last accessed 10/16/2009)
  20. 20.
    Wilson, D., Atkeson, C.G.: STAR: Simultaneous Tracking & Activity Recognition Using Many Anonymous Binary Sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gabe Cohn
    • 1
  • Sidhant Gupta
    • 2
  • Jon Froehlich
    • 2
  • Eric Larson
    • 1
  • Shwetak N. Patel
    • 1
    • 2
  1. 1.Electrical Engineering 
  2. 2.Computer Science & Engineering, UbiComp Lab, DUB GroupUniversity of WashingtonSeattle

Personalised recommendations