Ground-Truth-Less Comparison of Selected Content-Based Image Retrieval Measures

  • Rafał Fraczek
  • Michał Grega
  • Nicolas Liebau
  • Mikołaj Leszczuk
  • Andree Luedtke
  • Lucjan Janowski
  • Zdzisław Papir
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 40)

Abstract

The paper addresses the issue of finding the best content-based image retrieval measures. First, the authors describe several image descriptors that have been used for image feature extraction. Then, the detailed description of a query by example psycho-physical experiment is presented. The paper concludes with the analysis of the results obtained.

Keywords

Discrete Cosine Transform Image Retrieval Query Image Similar Image Jaccard Similarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nist/sematech e-handbook of statistical methodsGoogle Scholar
  2. 2.
    Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Proceedings of VLDB 2006 (2006)Google Scholar
  3. 3.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley and Sons Ltd., Chichester (2002)Google Scholar
  4. 4.
    Graffi, K., Kovacevic, A., Steinmetz, R.: Towards an information and efficiency management architecture for peer-to-peer systems based on structured overlays. Technical report, Multimedia Communications Lab KOM, Technische Universitaet Darmstadt (2008)Google Scholar
  5. 5.
    Hermes, T., Miene, A., Herzog, O.: Graphical Search for Images by PictureFinder. Multimedia Tools and Applications. Special Issue on Multimedia Retrieval Algorithmics (2005)Google Scholar
  6. 6.
    ISO/IEC. Information technology – multimedia content description interface. ISO/IEC 15938Google Scholar
  7. 7.
    Li, Y.: Object and concept recognition for content-based image retrieval. PhD thesis, University of Washington (2005)Google Scholar
  8. 8.
    Mademlis, A., Daras, P., Tzovaras, D., Strintzis, M.G.: 3d volume watermarking using 3d krawtchouk moments. In: VISAPP (1), pp. 280–283 (2007)Google Scholar
  9. 9.
    Ndjiki-Nya, P., Restat, J., Meiers, T., Ohm, J.R., Seyferth, A., Sniehotta, R.: Subjective evaluation of the MPEG-7 retrieval accuracy measure (ANMRR). Technical report, ISO/ WG11 MPEG Meeting, 200Google Scholar
  10. 10.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proceedings of the 8th ACM international workshop on Multimedia information retrieval (2006)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Rafał Fraczek
    • 1
  • Michał Grega
    • 1
  • Nicolas Liebau
    • 2
  • Mikołaj Leszczuk
    • 1
  • Andree Luedtke
    • 3
  • Lucjan Janowski
    • 1
  • Zdzisław Papir
    • 1
  1. 1.AGH University of Science and TechnologyPoland
  2. 2.Technische Universitaet DarmstadtGermany
  3. 3.Universitaet BremenGermany

Personalised recommendations