Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

  • Cristina Torres-Duarte
  • Rafael Vazquez-Duhalt


Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are mainly focused on the enzyme stability in the presence of hydrogen peroxide and operational conditions, an enzyme with high redox potential to be able to oxidize a wide range of xenobiotics or pollutants, and the protein overexpression at large-scale in industrial microorganisms is discussed.


  1. 1.
    US Environmental Protection Agency (2008) Toxics Release Inventory (TRI) Program. Accessed 27 July 2009
  2. 2.
    Pimentel D, Tort M, D’Anna L et al (1998) Ecology of increasing disease: Population growth and environmental degradation. BioScience 48:817–826CrossRefGoogle Scholar
  3. 3.
    Pimentel D, Cooperstei S, Randell H et al (2007) Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol 35:653–668CrossRefGoogle Scholar
  4. 4.
    Population Resource (2004) The Globalization of Infectious Disease. Accessed 2 October 2004
  5. 5.
    Schönbein CF (1863) Ueber die Katalytische Wirksamkeit organis- cher Materien und deren Vebreitung in der Pflanzen-und Thierwelt. J Prakt Chem 98:323–344CrossRefGoogle Scholar
  6. 6.
    Linossier G (1898) Contribution à l'étude des ferments oxidants. Sür la peroxidase du pups. CR Soc Biol Paris 50:373–375Google Scholar
  7. 7.
    Willstatter R, Pollinger A (1923) Über Peroxydase (Dritte Addandlung). Liebigs Ann Chem 430:269–319CrossRefGoogle Scholar
  8. 8.
    Willstatter R, Stoll A (1918) Über Peroxydase. Liebigs Ann Chem 416:21–64CrossRefGoogle Scholar
  9. 9.
    Nicell JA, Al-Kassim L, Bewtra JK et al (1993) Wastewater treatment by enzyme catalyzed polymerization and precipitation. Water Res 27:1629–1639CrossRefGoogle Scholar
  10. 10.
    Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141–153CrossRefGoogle Scholar
  11. 11.
    Aoyama H, Hojo H, Takahashi KL et al (2005) A two-generation reproductive toxicity study of 2, 4- dichlorophenol in rats. Toxicol Sci 30:59–78CrossRefGoogle Scholar
  12. 12.
    Kobayashi S, Fukuda T, Kawaguchi K et al (1972) Chronic toxicity of 2, 4-dichlorophenol in mice: a simple design for checking the toxicity of residual metabolites of pesticides. J Med Soc 19:356–362Google Scholar
  13. 13.
    US Environmental Protection Agency (1991) Superfund national priorities list for remediation. 40 CFR 423.A, Code of Federal RegulationsGoogle Scholar
  14. 14.
    Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Res 42:13–51CrossRefGoogle Scholar
  15. 15.
    Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52:B49–B58CrossRefGoogle Scholar
  16. 16.
    Job D, Dunford HB (1976) Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I. Eur J Biohem 66:607–614CrossRefGoogle Scholar
  17. 17.
    Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439CrossRefGoogle Scholar
  18. 18.
    Nannipieri P, Bollag JM (1991) Use of enzymes to detoxify pesticide – contaminated soils and waters. J Environ Qual 20:510–517CrossRefGoogle Scholar
  19. 19.
    Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881CrossRefGoogle Scholar
  20. 20.
    Bollag JM (1992) Enzymes catalyzing oxidative coupling reactions of pollutants. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Taylor and Francis, UKGoogle Scholar
  21. 21.
    Husain Q, Jan U (2000) Detoxification of phenols and aromatic amines from polluted wastewater by using phenol oxidases. J Sci Ind Res 59:286–293Google Scholar
  22. 22.
    Akhtar S, Husain Q (2006) Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere 65:1228–1235CrossRefGoogle Scholar
  23. 23.
    Bodalo A, Gomez JL, Gomez E et al (2006) Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere 63:626–632CrossRefGoogle Scholar
  24. 24.
    Danner DJ, Brignac PJ Jr, Arceneaux D et al (1973) The oxidation of phenol and its reaction product by horseradish peroxidase and hydrogen peroxide. Arch Biochem Biophys 156:759–763CrossRefGoogle Scholar
  25. 25.
    Caza N, Bewtra JK, Biswas N et al (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res 33:3012–3018CrossRefGoogle Scholar
  26. 26.
    Gomez JL, Bodalo A, Gomez E et al (2006) Immobilization of peroxidases on glass beads: an improved alternative for phenol removal. Enzyme Microb Technol 39:1016–1022CrossRefGoogle Scholar
  27. 27.
    Duarte-Vázquez MA, Ortega-Tovar M, García-Almendárez B et al (2003) Removal of aqueous phenolic compounds from a model system by oxidative polymerization with turnip (Brassica napus L. var purple top white globe) peroxidase. J Chem Technol Biotechnol 78:42–47CrossRefGoogle Scholar
  28. 28.
    Dunford HB (1990) In: Everse J, Everse KE, Grisham HB (eds) Peroxidase in chemistry and biology. CRC, Ann Arbor, MIGoogle Scholar
  29. 29.
    Nicell JA (1994) Kinetics of horseradish peroxidase-catalysed polymerization and precipitation of aqueous 4-chlorophenol. J Chem Technol Biotechnol 60:203–215CrossRefGoogle Scholar
  30. 30.
    Yu J, Taylor KE, Zou H et al (1994) Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ Sci Technol 28:2154–2160CrossRefGoogle Scholar
  31. 31.
    Dec J, Bollag JM (2000) Phenoloxidase-mediated interactions of phenols and anilines with humic materials. J Environ Qual 29:665–676CrossRefGoogle Scholar
  32. 32.
    Park JW, Dec J, Kim JE et al (1999) Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite. Environ Sci Technol 33:2028–2034CrossRefGoogle Scholar
  33. 33.
    Ward G, Hadar Y, Bilkis I et al (2001) Initial steps of ferulic acid polymerization by lignin peroxidase. J Biol Chem 276:18734–18741CrossRefGoogle Scholar
  34. 34.
    Bollag JM, Liu SY (1985) Copolymerization of halogenated phenols and syringic acid. Pestic Biochem Physiol 23:261–271CrossRefGoogle Scholar
  35. 35.
    Sarkar JM, Bollag JM, Malcolm RL (1988) Enzymatic coupling of 2, 4-dichlorophenol to stream fulvic acid in the presence of oxidoreductases. Soil Sci Soc Am J 52:688–694CrossRefGoogle Scholar
  36. 36.
    Hatcher PG, Bortiatynski JM, Minard RD et al (1993) Use of high-resolution carbon-13 NMR to examine the enzymatic covalent binding of carbon-13-labeled 2, 4-dichlorophenol to humic substances. Environ Sci Technol 27:2096–2103CrossRefGoogle Scholar
  37. 37.
    Dec J, Bollag JM (1994) Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Technol 28:484–490CrossRefGoogle Scholar
  38. 38.
    Roper JC, Sarkar JM, Dec J et al (1995) Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Res 29:2720–2724CrossRefGoogle Scholar
  39. 39.
    Kim JE, Wang CJ, Bollag JM (1997) Interaction of reactive and inert chemicals in the presence of oxidoreductases: Reaction of the herbicide bentazon and its metabolites with humic monomers. Biodegradation 8:387–392CrossRefGoogle Scholar
  40. 40.
    Park JW, Dec J, Kim JE et al (2000) Dehalogenation of xenobiotics as a consequence of binding to humic materials. Arch Environ Contam Toxicol 38:405–410CrossRefGoogle Scholar
  41. 41.
    Park JW, Dec J, Kim JE et al (2000) Transformation of chlorinated phenols and anilines in the presence of humic acid. J Environ Qual 29:214–220CrossRefGoogle Scholar
  42. 42.
    Huang Q, Weber WJ Jr (2004) Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions. Environ Sci Technol 38:338–344CrossRefGoogle Scholar
  43. 43.
    Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9:555–565CrossRefGoogle Scholar
  44. 44.
    Klibanov AM, Tu TM, Scott KP (1983) Peroxidase catalyzed removal of phenols from coal conversion wastewater. Science 221:259–261CrossRefGoogle Scholar
  45. 45.
    Nakamoto S, Machida N (1992) Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives. Water Res 26:49–54CrossRefGoogle Scholar
  46. 46.
    Tatsumi K, Wada S, Ichikawa H (1996) Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnol Bioeng 51:126–130CrossRefGoogle Scholar
  47. 47.
    Quintanilla-Guerrero F, Duarte-Vázquez MA, García-Almendarez BE et al (2008) Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresour Technol 99:8605–8611CrossRefGoogle Scholar
  48. 48.
    Quintanilla-Guerrero F, Duarte-Váquez M, Tinoco R et al (2008) Chemical modification of turnip peroxidase with methoxypolyethylene glycol enhances activity and stability for phenols removal using the immobilized enzyme. J Agric Food Chem 56:8058–8065CrossRefGoogle Scholar
  49. 49.
    Zhao F, Mayura K, Hutchinson RW et al (1995) Developmental toxicity and structure-activity relationship of chlorophenols using human embryonic palatal mesenchymal cells. Toxicol Lett 78:35–42CrossRefGoogle Scholar
  50. 50.
    Ahlborg UG, Thunberg TM (1980) Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. Crit Rev Toxicol 7:1–35CrossRefGoogle Scholar
  51. 51.
    Jensen J (1996) Chlorophenols in the terrestial environment. Rev Environ Contam Toxicol 146:25–51CrossRefGoogle Scholar
  52. 52.
    Proudfoot AT (2003) Pentachlorophenol poisoning. Toxicol Rev 22:3–11CrossRefGoogle Scholar
  53. 53.
    Dai J, Wright MW, Manderville RA (2003) An oxygen-bonded c8-deoxyguanosine nucleoside adduct of pentachlorophenol by peroxidase activation: evidence for ambident c8 reactivity by phenoxyl radicals. Chem Res Toxicol 16:817–821CrossRefGoogle Scholar
  54. 54.
    Dai J, Sloat AL, Wright MW et al (2005) Role of phenoxyl radicals in DNA adduction by chlorophenol xenobiotics following peroxidase activation. Chem Res Toxicol 18:771–779CrossRefGoogle Scholar
  55. 55.
    Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413Google Scholar
  56. 56.
    Shim SS, Kawamoto K (2002) Enzyme production activity of Phanerochaete chrysosporium and degradation of pentachlorophenol in a bioreactor. Water Res 36:4445–4454CrossRefGoogle Scholar
  57. 57.
    Fahr K, Wetzstein HG, Grey R et al (1999) Degradation of 2, 4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132CrossRefGoogle Scholar
  58. 58.
    Leontievsky AA, Myasoedova NM, Golovleva LA et al (2002) Adaptation of the white-rot basidiomycete Panus tigrinus for transformation of high concentrations of chlorophenols. Appl Microbiol Biotechnol 59:599–604CrossRefGoogle Scholar
  59. 59.
    Walter M, Boul L, Chong R et al (2004) Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J Environ Manage 71:361–369CrossRefGoogle Scholar
  60. 60.
    Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568CrossRefGoogle Scholar
  61. 61.
    Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of pentachlorophenol by lignin peroxidase. Arch Biochem Biophys 322:143–148CrossRefGoogle Scholar
  62. 62.
    Rüttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 62: 3890–3893Google Scholar
  63. 63.
    Samokyszyn VM, Freeman JP, Rao Maddipati K et al (1995) Peroxidase-catalyzed oxidation of pentachlorophenol. Chem Res Toxicol 8:349–355CrossRefGoogle Scholar
  64. 64.
    Choi YJ, Chae HJ, Kim EY (1999) Steady-state oxidation model by horseradish peroxidase for the estimation of the non-inactivation zone in the enzymatic removal of pentachlorophenol. J Biosci Bioeng 88:368–373CrossRefGoogle Scholar
  65. 65.
    Wittsiepe J, Kullmann Y, Schrey P et al (2000) Myeloperoxidase-catalyzed formation of PCDD/F from chlorophenols. Chemosphere 40:963–968CrossRefGoogle Scholar
  66. 66.
    Oberg LG, Paul KG (1985) The transformation of chlorophenols by lactoperoxidase. Biochim Biophys Acta 842:30–38CrossRefGoogle Scholar
  67. 67.
    Osman AM, Posthumus MA, Veeger C et al (1998) Conversion of pentahalogenated phenols by microperoxidase-8/H2O2 to benzoquinone-type products. Chem Res Toxicol 11:1319–1325CrossRefGoogle Scholar
  68. 68.
    Davila-Vazquez G, Tinoco R, Pickard MA et al (2005) Transformation of halogenated pesticides by versatile preoxidase from Bjerkandera adusta. Enzyme Microbiol Technol 36:223–231CrossRefGoogle Scholar
  69. 69.
    Longoria A, Tinoco R, Vazquez-Duhalt R (2008) Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72:485–490CrossRefGoogle Scholar
  70. 70.
    Kazunga C, Aitken MD, Gold A (1999) Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol. Environ Sci Technol 33:1408–1412CrossRefGoogle Scholar
  71. 71.
    Wittsiepe J, Kullmann Y, Schrey P et al (1999) Peroxidase-catalyzed in vitro formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols. Toxicol Lett 106:191–200CrossRefGoogle Scholar
  72. 72.
    Renner G (1980) Metabolic studies on pentachloronitrobenzene (PCNB) in rats. Xenobiotica 10:537–550CrossRefGoogle Scholar
  73. 73.
    Fushiwaki Y, Tase N, Saeki A et al (1990) Pollution by the fungicide pentachloronitrobenzene in an intensive farming area in Japan. Sci Total Environ 92:55–67CrossRefGoogle Scholar
  74. 74.
    Tas DO, Pavlostathis SG (2005) Microbial reductive transformation of pentachloronitrobenzene under methanogenic conditions. Environ Sci Technol 39:8264–8272CrossRefGoogle Scholar
  75. 75.
    Larsen GL, Huwe JK, Bakke JE (1998) Intermediary metabolism of pentachloronitrobenzene in the control and germ-free rat and rat with cannulated bile ducts. Xenobiotica 28:973–984CrossRefGoogle Scholar
  76. 76.
    Clary T, Ritz B (2003) Pancreatic cancer mortality and organochlorine pesticide exposure in California, 1989-1996. Am J Ind Med 43:306–313CrossRefGoogle Scholar
  77. 77.
    de Wolf W, Opperhuizen A, Seinen W et al (1991) Influence of survival time on the lethal body burden of 2, 3, 4, 5-tetrachloroaniline in the guppy, Poecilia reticulata. Sci Total Environ 109–110:457–459CrossRefGoogle Scholar
  78. 78.
    Argese E, Bettiol C, Agnoli F et al (2001) Assessment of chloroaniline toxicity by the submitochondrial particle assay. Environ Toxicol Chem 20:826–832CrossRefGoogle Scholar
  79. 79.
    Ribo JM, Kaiser KLE (1984) Toxicities of chloroanilines to Photobacterium phosphoreum and their correlations with effects on other organisms and structural parameters. In: Kaiser KLE (ed) QSAR in environmental toxicology. D. Reidel, Dordrecht, The NetherlandsGoogle Scholar
  80. 80.
    Sixt S, Altschuh J, Brüggemann R (1995) Quantitative structure-toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere 30:2397–2414CrossRefGoogle Scholar
  81. 81.
    Arjmand A, Sandermann H (1985) Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaete chrysosporium. J Agric Food Chem 33:1055–1060CrossRefGoogle Scholar
  82. 82.
    Corbett MD, Chipko BR, Baden DG (1978) Chloroperoxidase-catalyzed oxidation of 4-chloroaniline to 4-chloronitrosobenzene. Biochem J 175:353–360Google Scholar
  83. 83.
    Corbett MD, Chipko BR, Batchelor AO (1980) The action of chloride peroxidase on 4-chloroaniline. Biochem J 187:893–903Google Scholar
  84. 84.
    Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273CrossRefGoogle Scholar
  85. 85.
    Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46:1–15CrossRefGoogle Scholar
  86. 86.
    Weber R, Gaus C, Tysklind M et al (2008) Dioxin- and POP-contaminated sites-contemporary and future relevance and challenges: overview on background, aims and scope of the series. Environ Sci Pollut Res Int 15:363–393CrossRefGoogle Scholar
  87. 87.
    Ayala M, Robledo NR, Lopez-Munguia A et al (2000) Substrate specificity and ionization potential in chloroperoxidase- catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809CrossRefGoogle Scholar
  88. 88.
    Harford-Cross CF, Carmichael AB, Allan FK et al (2000) Protein engineering of cytochrome P450cam (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:121–128CrossRefGoogle Scholar
  89. 89.
    Masaphy S, Levanon D, Henis Y et al (1995) Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Lett 17:969–974CrossRefGoogle Scholar
  90. 90.
    Torres E, Sandoval JV, Rosell FI et al (1995) Site-directed mutagenesis improves biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme Microb Technol 17:1014–1020CrossRefGoogle Scholar
  91. 91.
    Ortiz-Leon M, Velasco L, Vazquez-Duhalt R (1995) Biocatalytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide. Biochem Biophys Res Comm 215:968–973CrossRefGoogle Scholar
  92. 92.
    Durant JL, Busby WF, Lafleur AL et al (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157CrossRefGoogle Scholar
  93. 93.
    Meulenberg R, Rijnaarts HHM, Doddema HJ et al (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:145–149CrossRefGoogle Scholar
  94. 94.
    Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2633Google Scholar
  95. 95.
    Torres E, Vazquez-Duhalt R (2000) Chemical modification of hemoglobin improves biocatalytic oxidation of PAH's. Biochem Biophys Res Comm 273:820–823CrossRefGoogle Scholar
  96. 96.
    Hayashi Y, Yamazaki I (1979) The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem 254:9101–9106Google Scholar
  97. 97.
    Wang Y, Vazquez-Duhalt R, Pickard MA (2002) Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr Microbiol 45:77–87CrossRefGoogle Scholar
  98. 98.
    Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49:675–682CrossRefGoogle Scholar
  99. 99.
    Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792Google Scholar
  100. 100.
    Vázquez-Duhalt R, Ayala M, Márquez-Rocha FJ (2001) Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry 58:929–933CrossRefGoogle Scholar
  101. 101.
    Vazquez-Duhalt R (1999) Cytochrome c as biocatalyst. J Mol Catal B Enzym 7:241–249CrossRefGoogle Scholar
  102. 102.
    Tinoco R, Vazquez-Duhalt R (1998) Chemical modification of cytochrome C improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb Technol 22:8–12CrossRefGoogle Scholar
  103. 103.
    Cabana H, Agathos SN (2007) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456CrossRefGoogle Scholar
  104. 104.
    Soares A, Jonasson K, Terrazas E et al (2005) The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Appl Microbiol Biotechnol 66:719–725CrossRefGoogle Scholar
  105. 105.
    Vazquez-Duhalt R, Marquez-Rocha F, Ponce E et al (2006) Nonylphenol, an integrated vision of a pollutant. Appl Ecol Environ Res 4:1–25Google Scholar
  106. 106.
    Hirano T, Honda Y, Watanabe T et al (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962CrossRefGoogle Scholar
  107. 107.
    Huang Q, Weber WJ (2005) Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ Sci Technol 39:6029–6036CrossRefGoogle Scholar
  108. 108.
    Tamagawa Y, Yamaki R, Hirai H et al (2006) Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi. Chemosphere 65:97–101CrossRefGoogle Scholar
  109. 109.
    Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276CrossRefGoogle Scholar
  110. 110.
    Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112:950–958CrossRefGoogle Scholar
  111. 111.
    McCauley LA, Anger WK, Keifer M et al (2006) Studying health outcomes in farmworker populations exposed to pesticides. Environ Health Perspect 114:953–960CrossRefGoogle Scholar
  112. 112.
    Engel LS, Checkoway H, Keifer MC et al (1998) Neurophysiological function in farm workers exposed to organophosphate pesticides. Arch Environ Health 53:7–14CrossRefGoogle Scholar
  113. 113.
    Jauregui J, Valderrama B, Albores A et al (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406CrossRefGoogle Scholar
  114. 114.
    Hernandez J, Robledo NR, Velasco L et al (1998) Chloroperoxidase-mediated oxidation of organophosphorus pesticides. Pestic Biochem Physiol 61:87–94CrossRefGoogle Scholar
  115. 115.
    Schecter A, Birnbaum L, Ryan JJ et al (2006) Dioxins: an overview. Environ Res 101:419–428CrossRefGoogle Scholar
  116. 116.
    Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952Google Scholar
  117. 117.
    Valli K, Wariishi H, Gold MH (1992) Degradation of 2, 7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137Google Scholar
  118. 118.
    Joshi DK, Gold MH (1994) Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Biochemistry 33:10969–10976CrossRefGoogle Scholar
  119. 119.
    Harazono K, Watanabe Y, Fukatsu T et al (2003) Trapping of 2, 7-dichlorodibenzo-p-dioxin in aqueous solution by enzymatic reaction of fungal manganese peroxidase in the presence of polyunsaturated fatty acids. Curr Microbiol 47:250–254CrossRefGoogle Scholar
  120. 120.
    Baron CP, Børresen T, Jacobsen C (2007) Comparison of methods to reduce dioxin and polychlorinated biphenyls contents in fishmeal: extraction and enzymatic treatments. J Agric Food Chem 55:1620–1626CrossRefGoogle Scholar
  121. 121.
    Oberg LG, Glas B, Swanson SE et al (1990) Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch Environ Contam Toxicol 19:930–938CrossRefGoogle Scholar
  122. 122.
    Safe S (1984) Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, and mechanism of action. Crit Rev Toxicol 13:319–393CrossRefGoogle Scholar
  123. 123.
    Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51–58CrossRefGoogle Scholar
  124. 124.
    Seegal RF, Schantz SL (1994) Neurochemical and behavioral sequelae of exposure to dioxins and PCBs. In: Schecter A (ed) Dioxins and health. Plenum, New York, N.Y, pp 409–447Google Scholar
  125. 125.
    Patandin S, Dagnelie PC, Mulder PGH et al (1999) Dietary exposure to polychlorinated biphenyls and dioxins from infancy until adulthood: a comparison between breast-feeding, toddler, and long-term exposure. Environ Health Perspect 107:45–51CrossRefGoogle Scholar
  126. 126.
    Ray S, Swanson HI (2009) Activation of the aryl hydrocarbon receptor by TCDD inhibits senescence: a tumor promoting event? Biochem Pharmacol 77:681–688CrossRefGoogle Scholar
  127. 127.
    Demers A, Ayotte P, Brisson J et al (2002) Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: a congener-specific analysis. Am J Epidemiol 155:629–635CrossRefGoogle Scholar
  128. 128.
    Shah MM, Barr DP, Chung N et al (1992) Use of white rot fungi in the degradation of environmental chemicals. Toxicol Lett 64–65:493–501CrossRefGoogle Scholar
  129. 129.
    Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40:1395–1402CrossRefGoogle Scholar
  130. 130.
    Novotný C, Vyas BR, Erbanová P et al (1997) Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol 42:136–140CrossRefGoogle Scholar
  131. 131.
    Chroma L, Macek T, Demnerova K et al (2000) Decolorization of RBBR by plant cells and correlation with the transformation of PCBs. Chemosphere 49:739–748CrossRefGoogle Scholar
  132. 132.
    Köller G, Möder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834CrossRefGoogle Scholar
  133. 133.
    Colosi LM, Burlingame DJ, Huang Q et al (2007) Peroxidase-mediated removal of a polychlorinated biphenyl using natural organic matter as the sole cosubstrate. Environ Sci Technol 41:891–896CrossRefGoogle Scholar
  134. 134.
    Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141CrossRefGoogle Scholar
  135. 135.
    Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221CrossRefGoogle Scholar
  136. 136.
    Champagne PP, Ramsay J (2005) Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Appl Microbiol Biotechnol 69:276–285CrossRefGoogle Scholar
  137. 137.
    Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401Google Scholar
  138. 138.
    Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29:473–477CrossRefGoogle Scholar
  139. 139.
    Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262CrossRefGoogle Scholar
  140. 140.
    Eichlerová I, Homolka L, Lisá L et al (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60:398–404CrossRefGoogle Scholar
  141. 141.
    Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38:27–32CrossRefGoogle Scholar
  142. 142.
    Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772CrossRefGoogle Scholar
  143. 143.
    Shrivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb Technol 36:333–337CrossRefGoogle Scholar
  144. 144.
    Shaffiqu T, Roy J, Nair R et al (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102–103:315–326CrossRefGoogle Scholar
  145. 145.
    Arrieta-Baez D, Roman R, Vazquez-Duhalt R et al (2002) Peroxidase-mediated transformation of hydroxy-9, 10-anthraquinones. Phytochemistry 60:567–572CrossRefGoogle Scholar
  146. 146.
    Ayala M, Pickard MA, Vazquez-Duhalt R (2008) Fungal enzymes for environmental purposes, a molecular biology challenge. J Mol Microbiol Biotechnol 15:172–180CrossRefGoogle Scholar
  147. 147.
    Ayala M, Roman R, Vazquez-Duhalt R (2007) A catalytic approach to estimate the redox potential of heme-peroxidases. Biochem Biophys Res Commun 357:804–808CrossRefGoogle Scholar
  148. 148.
    Vazquez-Duhalt R, Westlake DWS, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 60:459–466Google Scholar
  149. 149.
    Cavalieri E, Munhall A, Rogan E et al (1983) Syncarcinogenic effect of the environmental pollutants cyclopenteno[cd]pyrene and benzo[a]pyrene in mouse skin. Carcinogenesis 4:393–397CrossRefGoogle Scholar
  150. 150.
    Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158CrossRefGoogle Scholar
  151. 151.
    Nie G, Reading NS, Aust SD (1999) Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 365:328–334CrossRefGoogle Scholar
  152. 152.
    Conesa A, Punt PJ, van Luijk N et al (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171CrossRefGoogle Scholar
  153. 153.
    Punt PJ, van Viesen N, Conesa A et al (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cristina Torres-Duarte
    • 1
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de BiotecnologíaUNAMCuernavacaMéxico

Personalised recommendations