Molecular Phylogeny of Heme Peroxidases

Abstract

All currently available gene sequences of heme peroxidases can be phylogenetically divided in two superfamilies and three families. In this chapter, the phylogenetics and genomic distribution of each group are presented. Within the peroxidase–cyclooxygenase superfamily, the main evolutionary direction developed peroxidatic heme proteins involved in the innate immune defense system and in biosynthesis of (iodinated) hormones. The peroxidase–catalase superfamily is widely spread mainly among bacteria, fungi, and plants, and particularly in Class I led to the evolution of bifunctional catalase–peroxidases. Its numerous fungal representatives of Class II are involved in carbon recycling via lignin degradation, whereas Class III secretory peroxidases from algae and plants are included in various forms of secondary metabolism. The family of di-heme peroxidases are predominantly bacteria-inducible enzymes; however, a few corresponding genes were also detected in archaeal genomes. Four subfamilies of dyp-type peroxidases capable of degradation of various xenobiotics are abundant mainly among bacteria and fungi. Heme-haloperoxidase genes are widely spread among sac and club fungi, but corresponding genes were recently found also among oomycetes. All described families herein represent heme peroxidases of broad diversity in structure and function. Our accumulating knowledge about the evolution of various enzymatic functions and physiological roles can be exploited in future directed evolution approaches for engineering peroxidase genes de novo for various demands.

References

  1. 1.
    Talwalkar A, Kailasapathy K (2004) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5:1–8Google Scholar
  2. 2.
    Gracieux MV, Tamanai-Shacoori Z, Perez-Chaparro J et al (2008) Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis. Oral Microbiol Immunol 23:308–314CrossRefGoogle Scholar
  3. 3.
    Bernroitner M, Zamocky M, Furtmüller PG et al (2009) Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot 60:423–440CrossRefGoogle Scholar
  4. 4.
    Bekker A, Holland HD, Wang PL et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  5. 5.
    Regelsberger G, Jakopitsch C, Plasser L et al (2002) Occurrence and biochemistry of hydroperoxidases in oxygenic photorophic prokaryotes (cyanobacteria). Plant Physiol Biochem 40:479–490CrossRefGoogle Scholar
  6. 6.
    Passardi F, Theiler G, Zámocký M et al (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611CrossRefGoogle Scholar
  7. 7.
    Sugano Y (2009) Dyp-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403CrossRefGoogle Scholar
  8. 8.
    Klotz M, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and form bacteria into eukaryota. Mol Biol Evol 20:1098–1112CrossRefGoogle Scholar
  9. 9.
    Zámocký M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1547CrossRefGoogle Scholar
  10. 10.
    Zámocký M, Jakopitsch C, Furtmüller PG et al (2008) The peroxidase-cyclooxygenase superfamily: reconstructed evolution of critical enzymes of the innate immune system. Proteins 72:589–605CrossRefGoogle Scholar
  11. 11.
    Söderhall K (1999) Invertebrate immunity. Dev Comp Immunol 23:263–266CrossRefGoogle Scholar
  12. 12.
    Dick GJ, Podell S, Johnson HA et al (2008) Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl Environ Microbiol 74:2646–2658CrossRefGoogle Scholar
  13. 13.
    Tamura K, Dudley J, Nei M et al (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  14. 14.
    Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152CrossRefGoogle Scholar
  15. 15.
    Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427CrossRefGoogle Scholar
  16. 16.
    Ris-Stalpers C (2006) Physiology and pathophysiology of the DUOXes. Antioxid Redox Signal 8:1563–1572CrossRefGoogle Scholar
  17. 17.
    Johansson MW, Lind MI, Holmblad T et al (1995) Peroxinectin, a novel cell adhesion protein from crayfish blood. Biochem Biophys Res Commun 216:1079–1087CrossRefGoogle Scholar
  18. 18.
    Cheng G, Salerno JC, Cao Z et al (2008) Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radic Biol Med 45:1682–1694CrossRefGoogle Scholar
  19. 19.
    Nelson RE, Fessler RI, Takagi Y et al (1994) Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J 13:3438–3447Google Scholar
  20. 20.
    Karaulanov EE, Bottcher RT, Niehrs C (2006) A role for fibronectine-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep 7:283–290CrossRefGoogle Scholar
  21. 21.
    Zhang J-L, Huang Y, Qiu L-Y et al (2007) von Willebrand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms. J Biol Chem 282:20002–20014CrossRefGoogle Scholar
  22. 22.
    Loughran NB, O’Connor B, O’Fágáin C et al (2008) The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions. BMC Evol Biol 8:101CrossRefGoogle Scholar
  23. 23.
    Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Phys 111:383–389Google Scholar
  24. 24.
    Wang J, Slungaard A (2006) Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 445:256–260CrossRefGoogle Scholar
  25. 25.
    Ruf J, Carayon P (2006) Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445:269–277CrossRefGoogle Scholar
  26. 26.
    Chernokalskaya E, Dubell AN, Cunningham KS et al (1998) A polysomal ribonuclease involved in the destabilization of albumin mRNA is a novel member of the peroxidase gene family. RNA 4:1537–1548CrossRefGoogle Scholar
  27. 27.
    Keilin D, Mann T (1937) On the haematin compound of peroxidase. Proc R Soc Lond 122B:119–133CrossRefGoogle Scholar
  28. 28.
    Kaput J, Goltz S, Blobel G (1982) Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J Biol Chem 257:15054–15058Google Scholar
  29. 29.
    Welinder KG (1992) Superfamily of plant, fungal, and bacterial peroxidases. Curr Opin Struct Biol 2:388–393CrossRefGoogle Scholar
  30. 30.
    Habetha M, Bosch TC (2005) Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 208:2157–2165CrossRefGoogle Scholar
  31. 31.
    Myers P, Espinosa R, Parr CS et al (2008) The Animal Diversity Web. http://animaldiversity.org
  32. 32.
    Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257CrossRefGoogle Scholar
  33. 33.
    Passardi F, Bakalovic N, Teixeira FK et al (2007) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89:567–579CrossRefGoogle Scholar
  34. 34.
    Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508CrossRefGoogle Scholar
  35. 35.
    Welinder KG (1991) Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta 1080:215–220CrossRefGoogle Scholar
  36. 36.
    Zámocký M, Regelsberger G, Jakopitsch C et al (2001) The molecular peculiarities of catalase-peroxidases. FEBS Lett 492:177–182CrossRefGoogle Scholar
  37. 37.
    Zámocký M (2004) Phylogenetic relationships in Class I of the superfamily of bacterial, fungal, and plant peroxidases. Eur J Biochem 271:3297–3309CrossRefGoogle Scholar
  38. 38.
    Passardi F, Zamocky M, Favet J et al (2007) Phylogenetic distribution of catalase-peroxidases: are there patches of order in chaos? Gene 397:101–113CrossRefGoogle Scholar
  39. 39.
    Zámocký M, Furtmüller PG, Obinger C (2009) Two distinct groups of fungal catalase/peroxidases. Biochem Soc Trans 37:772–777CrossRefGoogle Scholar
  40. 40.
    Xi L, Xu X, Liu W et al (2007) Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases. J Med Microbiol 56:298–304CrossRefGoogle Scholar
  41. 41.
    Champeil A, Doré T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166:1389–1415CrossRefGoogle Scholar
  42. 42.
    Nishizawa Y, Nishio Z, Nakazono K et al (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390CrossRefGoogle Scholar
  43. 43.
    Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687CrossRefGoogle Scholar
  44. 44.
    Zámocký M, Dunand C (2006) Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Lett 580:6655–6664CrossRefGoogle Scholar
  45. 45.
    Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505CrossRefGoogle Scholar
  46. 46.
    Hildén K, Martinéz AT, Hatakka A et al (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419CrossRefGoogle Scholar
  47. 47.
    Ruiz-Duenas FJ, Morales M, Garcia E et al (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452CrossRefGoogle Scholar
  48. 48.
    Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a phylogenetic overview. J Mol Evol 57:397–407CrossRefGoogle Scholar
  49. 49.
    Welinder KG, Justensen AF, Kjaersgard IV et al (2002) Structural diversity and transcription of Class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081CrossRefGoogle Scholar
  50. 50.
    Passardi F, Longet D, Penel C et al (2004) The Class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893CrossRefGoogle Scholar
  51. 51.
    Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259CrossRefGoogle Scholar
  52. 52.
    Oliva M, Theiler G, Zámocký M et al (2009) PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. J Exp Bot 60:453–459CrossRefGoogle Scholar
  53. 53.
    Brittain T (2008) Intra-molecular electron transfer in proteins. Protein Pept Lett 15:556–561CrossRefGoogle Scholar
  54. 54.
    Echalier A, Goodhew CF, Pettigrew GW et al (2006) Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus. Structure 14:107–117CrossRefGoogle Scholar
  55. 55.
    Gak ER, Tsygankov YD, Chistoserdov AY (1997) Organization of methylamine utilization genes (mau) in Methylobacillus flagellatum KT and analysis of mau mutants. Microbiology 143:1827–1835CrossRefGoogle Scholar
  56. 56.
    Wang Y, Graichen ME, Liu A et al (2003) MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis. Biochemistry 42:7318–7325CrossRefGoogle Scholar
  57. 57.
    van Spanning RJ, de Boer AP, Reijinders WN et al (1997) FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23:893–907CrossRefGoogle Scholar
  58. 58.
    Zubieta C, Joseph R, Krishna SS et al (2007) Identification and structural characterization of heme binding in a novel dye decolorizing peroxidase, TyrA. Proteins 69:234–243CrossRefGoogle Scholar
  59. 59.
    Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035Google Scholar
  60. 60.
    Sugano Y, Muramatsu R, Ichiyanagi A et al (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem 282:36652–36658CrossRefGoogle Scholar
  61. 61.
    Cartron ML, Mitchell SA, Woodhall MR et al (2007) Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:37–41CrossRefGoogle Scholar
  62. 62.
    Faraco V, Piscitelli A, Sannia G et al (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893CrossRefGoogle Scholar
  63. 63.
    Hofrichter M, Ulrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288CrossRefGoogle Scholar
  64. 64.
    Osborne RL, Raner GM, Hager LP et al (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037CrossRefGoogle Scholar
  65. 65.
    Manoj KM, Hager LP (2001) Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim Biophys Acta 1547:408–417CrossRefGoogle Scholar
  66. 66.
    Anh DH, Ullrich R, Benndorf D et al (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Metalloprotein Research Group, Division of Biochemistry, Department of ChemistryUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations