Local Convergence of Sequential Convex Programming for Nonconvex Optimization

Conference paper

Summary

This paper introduces sequential convex programming (SCP), a local optimzation method for solving nonconvex optimization problems. A full-step SCP algorithm is presented. Under mild conditions the local convergence of the algorithm is proved as a main result of this paper. An application to optimal control illustrates the performance of the proposed algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Boyd and L. Vandenberghe (2004). Convex optimization. University Press, Cambridge.MATHGoogle Scholar
  2. 2.
    R. Correa and H. Ramirez C (2004). A global algorithm for nonlinear semidefinite programming. SIAM J. Optim., 15(1):303–318.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. L. Dontchev and T. R. Rockafellar (1996). Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim., 6(4):1087–1105.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    B. Fares, D. Noll, and P. Apkarian (2002). Robust control via sequential semidefinite programming. SIAM J. Control Optim., 40:1791–1820.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. W. Freund, F. Jarre, and C. H. Vogelbusch (2007). Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Mathemat- ical Programming, Ser. B, 109:581–611.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Fukushima, Z.-Q. Luo, and P. Tseng (2003). A sequential quadratically constrained quadratic programming method for differentiable convex minimization. SIAM J. Optimization, 13(4):1098–1119.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Jaddu (2002). Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials. Journal of the Franklin Institute, 339:479–498.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    F. Jarre (2003). On an approximation of the Hessian of the Lagrangian. Optimization Online (http://www.optimization-online.org/DB_HTML/2003/12/800.html).
  9. 9.
    J.L. Junkins and J.D. Turner (1986). Optimal spacecraft rotational maneuvers. Elsevier, Amsterdam.Google Scholar
  10. 10.
    C. Kanzow, C. Nagel, H. Kato and M. Fukushima (2005). Successive linearization methods for nonlinear semidefinite programs. Computational Optimization and Applications, 31:251–273.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D. Klatte and B. Kummer (2001). Nonsmooth equations in optimization: regularity, cal- culus, methods and applications. Springer-Verlag, New York.Google Scholar
  12. 12.
    A. S. Lewis and S. J. Wright (2008). A proximal method for composite minimization. http://arxiv.org/abs/0812.0423
  13. 13.
    S. M. Robinson (1980). Strong regularity generalized equations, Mathematics of Operation Research, 5(1):43–62.MATHCrossRefGoogle Scholar
  14. 14.
    R. T. Rockafellar and R. J-B. Wets (1997). Variational analysis. Springer-Verlag, New York.Google Scholar

Copyright information

© Springer -Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Electrical Engineering (SCD-ESAT) and OPTECKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations