Advertisement

Impact of the Material Distribution Formalism on the Efficiency of Evolutionary Methods for Topology Optimization

  • J. Denies
  • B. Dehez
  • F. Glineur
  • H. Ben Ahmed
Conference paper

Summary

We consider an evolutionary method applied to a topology optimization problem. We compare two material distribution formalisms (static vs. Voronoibased dynamic), and two sets of reproduction mechanisms (standard vs. topologyadapted). We test those four variants on both theoretical and practical test cases, to show that the Voronoi-based formalism combined with adapted reproduction mechanisms performs better and is less sensitive to its parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyck D.N., Lowther D.A. (May 1996) Automated design of magnetic devices by optimizing material distribution IEEE Trans. Magn., 32 (3), pp.1188-1193CrossRefGoogle Scholar
  2. 2.
    Lowther D. A., Mai W., Dyck D. N., (September 1998) A comparison of MRI magnet design using a hopfield network and the optimized material distribution method, IEEE Trans. Magn., Vol. 34, No 5, pp.2885-2888CrossRefGoogle Scholar
  3. 3.
    Dufour S, Vinsard G, Laporte B (July 2000) Generating rotor geometries by using a genetic method, IEEE Trans. Mag., Vol. 36, No 4, pp.1039-1042CrossRefGoogle Scholar
  4. 4.
    Denies J., Ben Ahmed H., Dehez B. (2009) Design of a ferrofluid micropump using a topological optimization method, Proc. of ElectromotionGoogle Scholar
  5. 5.
    Deb K., Agrawal S., Pratab A., Meyarivan T. (September 2000) A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization : NSGA II, Proc. PPSN VI, 849-858.Google Scholar
  6. 6.
    A. R. Conn, K. Scheinberg, and L. N. Vicente (2009) Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization, SIAM, Philadelphia.MATHGoogle Scholar
  7. 7.
    Schoenauer M. (March 1996) Shape representations and evolution schemes, Proc. of the 5th Annual Conference on Evolutionary Programming, San Diego.Google Scholar
  8. 8.
    Im Chang-Hwa, Jung Hyun-Kyo, Kim Yong-Joo (September 2003) Hybrid genetic algorithm for electromagnetic topology optimization, IEEE Trans. Magn., Vol. 39, No 5, pp.2163-2169CrossRefGoogle Scholar
  9. 9.
    Skiena, S. S. (1997) Voronoi Diagrams 8.6.4 in The Algorithm Design Manual. New York, Springer-Verlag, pp. 358–360.Google Scholar
  10. 10.
    Schoenauer M, Jouve F, Leila K (1997) Identification of mechanical inclusions, Evolutionary Computation in Engeneering, pp.477-494Google Scholar
  11. 11.
    Dehez B., Denies J., Ben Ahmed H. (September 2008) Design of electromagnetic actuators using optimizing material distribution methods, Proc. of Int. Conf. on Electrical Machines, Vilamoura (Portugal), ISBN: 978-1-4244-1736-0.Google Scholar
  12. 12.
    COMSOL Multiphyics 3.5a ®, http://www.comsol.com

Copyright information

© Springer -Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.CEREM - Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.ICTEAM & IMMAQ/CORE - Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.SATIE laboratory - Ecole Normale Supérieure de Cachan antenne de BretagneBruzFrance

Personalised recommendations