Refining Sparse Principal Components

  • M. Journée
  • F. Bach
  • P.-A. Absil
  • R. Sepulchre
Conference paper


In this paper, we discuss methods to refine locally optimal solutions of sparse PCA. Starting from a local solution obtained by existing algorithms, these methods take advantage of convex relaxations of the sparse PCA problem to propose a refined solution that is still locally optimal but with a higher objective value.


Convex Program Convex Relaxation Dominant Eigenvector Sparse Principal Component Analysis Unit Euclidean Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Michel Journée is a research fellow of the Belgian National Fund for Scientific Research (FNRS). This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.


  1. 1.
    A. dďAspremont, F. R. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 9:1269– 1294, 2008.Google Scholar
  2. 2.
    A. dď Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49:434–448, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Cadima and I. T. Jolliffe. Loadings and correlations in the interpretation of principal components. Journal of Applied Statistics, 22:203–214, 1995.CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Journ´ee, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization for semidefinite convex problems. Submitted to SIAM Journal on Optimization (preprint available on ArXiv), 2008.Google Scholar
  5. 5.
    M. Journ´ee, Y. Nesterov, P. Richt´arik, and R. Sepulchre. Generalized power method for sparse principal component analysis. Accepted to Journal of Machine Learning Research (preprint available on ArXiv), 2008.Google Scholar
  6. 6.
    I. T. Jolliffe. Rotation of principal components: choice of normalization constraints. Journal of Applied Statistics, 22:29–35, 1995.CrossRefMathSciNetGoogle Scholar
  7. 7.
    I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique based on the LASSO. Journal of Computational and Graphical Statistics, 12(3):531–547, 2003.CrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 915–922. MIT Press, Cambridge, MA, 2006.Google Scholar
  9. 9.
    H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis, 99(6):1015– 1034, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer -Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Journée
    • 1
  • F. Bach
    • 2
  • P.-A. Absil
    • 3
  • R. Sepulchre
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of LièegeLièegeBelgium
  2. 2.INRIA - Willow project, Dèpartement d’InformatiqueEcole Normale SupéerieureParisFrance
  3. 3.Universitée catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations