Goal-Directed and Relative Dependency Pairs for Proving the Termination of Narrowing

  • José Iborra
  • Naoki Nishida
  • Germán Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6037)

Abstract

In this work, we first consider a goal-oriented extension of the dependency pair framework for proving termination w.r.t. a given set of initial terms. Then, we introduce a new result for proving relative termination in terms of a dependency pair problem. Both contributions put together allow us to define a simple and powerful approach to analyzing the termination of narrowing, an extension of rewriting that replaces matching with unification in order to deal with logic variables. Our approach could also be useful in other contexts where considering termination w.r.t. a given set of terms is also natural (e.g., proving the termination of functional programs).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing Using Dependency Pairs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Antoy, S., Hanus, M.: Overlapping Rules and Logic Variables in Functional Logic Programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 87–101. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236(1-2), 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for lpo termination. CoRR, abs/cs/0512067 (2005)Google Scholar
  6. 6.
    Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: Sat solving for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    de Dios-Castro, J., López-Fraguas, F.: Extra Variables Can Be Eliminated from Functional Logic Programs. In: Proc. of the 6th Spanish Conf. on Programming and Languages (PROLE 2006), ENTCS, vol. 188, pp. 3–19 (2007)Google Scholar
  8. 8.
    Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computation 3(1,2), 69–115 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)Google Scholar
  10. 10.
    Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. Journal of Logic Programming 19,20, 583–628 (1994)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Iborra, J., Nishida, N., Vidal, G.: Goal-directed Dependency Pairs and its Application to Proving the Termination of Narrowing (2010), http://users.dsic.upv.es/~gvidal/german/papers.html
  16. 16.
    Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Marche, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Nishida, N., Vidal, G.: Termination of Narrowing via Termination of Rewriting, Submitted for publication (2009)Google Scholar
  19. 19.
    Ohlebusch, E.: Advanced topics in term rewriting. Springer-Verlag, UK (2002)MATHGoogle Scholar
  20. 20.
    Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termination Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termination using recursive path orders and sat solving. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commutativity and Associativity. Journal of the ACM 21(4), 622–642 (1974)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Steinbach, J.: Simplification Orderings: Histrory of Results. Fundamenta Informaticae 24(1/2), 47–87 (1995)MATHMathSciNetGoogle Scholar
  24. 24.
    Urbain, X.: Modular & incremental automated termination proofs. Int. Journal of Approx. Reasoning 32(4), 315–355 (2004)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Vidal, G.: Termination of Narrowing in Left-Linear Constructor Systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • José Iborra
    • 1
  • Naoki Nishida
    • 2
  • Germán Vidal
    • 1
  1. 1.DSICUniversidad Politécnica de ValenciaSpain
  2. 2.Graduate School of Information ScienceNagoya UniversityNagoyaJapan

Personalised recommendations