Advertisement

Defining Datalog in Rewriting Logic

  • M. Alpuente
  • M. A. Feliú
  • C. Joubert
  • A. Villanueva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6037)

Abstract

In recent work, the effectiveness of using declarative languages has been demonstrated for many problems in program analysis. Using a simple relational query language, like Datalog, complex interprocedural analyses involving dynamically created objects can be expressed in just a few lines. By exploiting the power of the Rewriting Logic language Maude, we aim at transforming Datalog programs into efficient rewrite systems that compute the same answers. A prototype has been implemented and applied to some real-world Datalog-based analyses. Experimental results show that the performance of solving Datalog queries in rewriting logic is comparable to state-of-the-art Datalog solvers.

Keywords

Logic Program Auxiliary Function Java Program Predicate Symbol Deductive Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in Rewriting Logic. Tech. Rep. DSIC-II/07/09, DSIC, Technical University of Valencia (2009)Google Scholar
  2. 2.
    Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Implementing Datalog in Maude. In: Proc. of I Taller de Programación Funcional (TPF 2009), 15–22 (2009)Google Scholar
  3. 3.
    Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Using Datalog and Boolean Equation Systems for Program Analysis. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 215–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126(1), 3–30 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Implement Logic Programs. In: Proc. of the 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS 1986), pp. 1–15. ACM Press, New York (1986)CrossRefGoogle Scholar
  6. 6.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Clavel, M., Durán, F., Ejer, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Hill, P.M., Lloyd, J.W.: Analysis of Meta-Programs. In: Proc. of the First International Workshop on Meta-Programming in Logic (META 1988), pp. 23–51 (1988)Google Scholar
  9. 9.
    Leeuwen, J. (ed.): Formal Models and Semantics, vol. B. Elsevier, The MIT Press (1990)Google Scholar
  10. 10.
    Liu, Y., Stoller, S.: From Datalog Rules to Efficient Programs with Time and Space Guarantees. ACM Transactions on Programming Languages and Systems 31(6) (2009)Google Scholar
  11. 11.
    Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Rodríguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 223–241. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Marchiori, M.: Unravelings and ultra-properties. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc. of the Symposium on Logic Programming (SLP 1984), pp. 187–197. IEEE Computer Society Press, Los Alamitos (1984)Google Scholar
  16. 16.
    Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termination Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Ullman, J.D.: Principles of Database and Knowledge-Base Systems. In: The New Technologies, vol. I, II. Computer Science Press, Rockville (1989)Google Scholar
  18. 18.
    Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Approach. In: Proc. of the 1st International Conference on Expert Database Systems (EDS 1986), pp. 253–267 (1986)Google Scholar
  19. 19.
    Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision Diagrams for Program Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Alpuente
    • 1
  • M. A. Feliú
    • 1
  • C. Joubert
    • 1
  • A. Villanueva
    • 1
  1. 1.DSIC / ELPUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations