Relation Extraction for Monitoring Economic Networks

  • Martin Had
  • Felix Jungermann
  • Katharina Morik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5723)

Abstract

Relation extraction from texts is a research topic since the message understanding conferences. Most investigations dealt with English texts. However, the heuristics found for these do not perform well when applied to a language with free word order, as is, e.g., German. In this paper, we present a German annotated corpus for relation extraction. We have implemented the state of the art methods of relation extraction using kernel methods and evaluate them on this corpus. The poor results led to a feature set which focusses on all words of the sentence and a tree kernel which includes words, in addition to the syntactic structure. The relation extraction is applied to monitoring a graph of economic company-directors network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buncescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In: HLT 2005: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada, pp. 724–731. Association for Computational Linguistics (2005)Google Scholar
  2. 2.
    Bunescu, R.C., Mooney, R.J.: Subsequence kernels for relation extraction. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 171–178. MIT Press, Cambridge (2006)Google Scholar
  3. 3.
    Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, vol. 14, pp. 625–632. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: WWW 2008. ACM Press, New York (2008)Google Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Procs. KDD, pp. 57–66. ACM Press, New York (2001)Google Scholar
  6. 6.
    Golder, S.A., Wilkinson, D.M., Huberman, B.A.: Rhythms of social interaction: Messaging within a massive online network. In: Procs. 3rd Intl. Conf. on Communities and Technologies (2007)Google Scholar
  7. 7.
    Haussler, D.: Convolution kernels on discrete structures. Technical report, University of California in Santa Cruz, Computer Science Dept. (1999)Google Scholar
  8. 8.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Procs. of European Conference on Machine Learning, pp. 137–142. Springer, Heidelberg (1989)Google Scholar
  9. 9.
    Jungermann, F.: Information extraction with rapidminer. In: Hoeppner, W. (ed.) Proceedings of the GSCL Symposium ‘Sprachtechnologie und eHumanities’, pp. 50–61. Universität Duisburg-Essen, Abteilung für Informatik und Angewandte Kognitionswissenschaft Fakultät für Ingenieurwissenschaften (2009)Google Scholar
  10. 10.
    Klein, D., Manning, C.D.: Fast extract inference with a factored model for natural language parsing. In: Proceedings of Advances in Neural Information Processing Systems (2002)Google Scholar
  11. 11.
    Linguistic Data Consortium. In: The ACE 2004 Evaluation Plan (2004)Google Scholar
  12. 12.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Procs. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, KDD (2006)Google Scholar
  13. 13.
    Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    O’Madadhain, J., Fisher, D., White, S., Boey, Y.-B.: The JUNG (java universal network/graph) framework. Technical Report Technical Report UCI-ICS 03-17, School of Information and Computer Science University of California, Irvine, CA 92697-3425 (2003)Google Scholar
  15. 15.
    Palau, J., Montaner, M., López, B., de la Rosa, J.L.: Collaboration analysis in recommender systems using social networks. In: Procs. Cooperative Information Agents VIII, pp. 137–151. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Skut, W., Krenn, B., Brants, T., Uszkoreit, H.: An annotation scheme for free word order languages. In: Proceedings of the Fifth Conference on Applied Natural Language Processing ANLP 1997, Washington, DC (1997)Google Scholar
  17. 17.
    Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In: NIPS, pp. 569–576 (2002)Google Scholar
  18. 18.
    Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. Journal of Machine Learning Research 3, 1083–1106 (2003)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhang, M., Che, W., Aw, A.T., Tan, C.L., Zhou, G., Liu, T., Li, S.: A grammar-driven convolution tree kernel for semantic role classification. In: Procs. 4th Annual Meeting of ACL, pp. 200–207 (2007)Google Scholar
  20. 20.
    Zhang, M., Zhang, J., Su, J., Zhou, G.: A composite kernel to extract relations between entities with both flat and structured features. In: Procs. 44th Annual Meeting of ACL, pp. 825–832 (2006)Google Scholar
  21. 21.
    Zhao, S., Grishman, R.: Extracting relations with integrated information using kernel methods. In: ACL 2005: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Morristown, NJ, USA, pp. 419–426. Association for Computational Linguistics (2005)Google Scholar
  22. 22.
    Zhou, D., Orshanskiy, S.A., Zha, H., Giles, C.L.: Co-ranking authors and documents in a heterogeneous network. In: 7th IEEE ICDM (2007)Google Scholar
  23. 23.
    Zhou, G., Su, J., Zhang, M., Zhang, J.: Exploring various knowledge in relation extraction. In: ACL, pp. 427–434 (2005)Google Scholar
  24. 24.
    Zhou, G., Zhang, M., Ji, D.H., Zhu, Q.: Tree kernel-based relation extraction with context-sensitive structured parse tree information. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Association for Computational Linguistics (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Had
    • 1
  • Felix Jungermann
    • 1
  • Katharina Morik
    • 1
  1. 1.Department of Computer Science - Artificial Intelligence GroupTechnical University of DortmundDortmundGermany

Personalised recommendations