We describe an algorithm for detecting semantically equivalent metadata across namespaces instantiated as database schema, an operation otherwise known as schema-matching. Assuming a metadata description discipline which imposes graph-theoretic constraints on data dictionaries, the algorithm employs analytical techniques used in information retrieval, information theory, and computational linguistics. It exploits the information inherent in textual metadata description and metadata dependency relations in order to match elements across schema boundaries.


Schema-matching database lexicography metadata management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahm, E., Bernstein, P.: A Survey of Approaches to Automatic Schema Matching. The VLDB Journal 10, 334–350 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Coen, G.: Dictionaries and Lexical Graphs. In: Moreno, A., van de Ried, R.P. (eds.) Applications of Natural Language to Information Systems. Gesellschaft für Informatik, Bonn (2001)Google Scholar
  3. 3.
    Coen, G.: Database Lexicography. Data and Knowledge Engineering 42, 3 (2002)CrossRefGoogle Scholar
  4. 4.
    Lesk, M.: Automated Sense Disambiguation Using Machine-readable Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. In: Proceedings of the 5th Annual International Conference on Systems Documentation, Toronto, Ontario, Canada, pp. 24–26 (1986)Google Scholar
  5. 5.
    Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill, New York (1968)Google Scholar
  6. 6.
    Doyle, L.B.: The Microstatistics of Text. Information Storage and Retrieval 1, 189–214 (1963)CrossRefGoogle Scholar
  7. 7.
    Cormack, A.: Definitions: Implications for Syntax, Semantics, and the Language of Thought. Garland, New York (1998)Google Scholar
  8. 8.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  9. 9.
    Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  10. 10.
    Robertson, S.E., et al.: Large test collection experiments on an operational, interactive system: Okapi at TREC. Information Processing and Management 31, 345–360 (1995)CrossRefGoogle Scholar
  11. 11.
    Manly, B.F.J.: Multivariate Statistical Methods: A Primer. Chapman & Hall, London (1986)Google Scholar
  12. 12.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman and Company, San Francisco (1973)zbMATHGoogle Scholar
  13. 13.
    Kaplan, D.: Demonstratives. In: Almong, J., et al. (eds.) Themes from Kaplan. Oxford University Press, Oxford (1989)Google Scholar
  14. 14.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema matching with Cupid. In: Proceedings of the 27th VLDB Conference, Rome, Italy (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gary Coen
    • 1
  • Ping Xue
    • 1
  1. 1.Boeing Research and TechnologySeattle

Personalised recommendations