CITOM: Incremental Construction of Topic Maps

  • Nebrasse Ellouze
  • Nadira Lammari
  • Elisabeth Métais
  • Mohamed Ben Ahmed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5723)


This paper proposes the CITOM approach for an incremental construction of multilingual Topic Maps. Our main goal is to facilitate the user’s navigation across documents available in different languages. Our approach takes into account three types of information sources: (a) a set of multilingual documents, (b) a domain thesaurus and (c) all the possible questioning sources such as FAQ and user’s or expert’s requests about documents. We have been validating our approach with a real corpus from the sustainable construction domain.


Topic Map (TM) incremental construction enrichment multilingual documents thesaurus user requests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO/IEC :13250. Topic Maps: Information technology-document description and markup languages (2000),
  2. 2.
    Ellouze, N., Métais, E., Ben Ahmed, M.: State of the Art on Topic Maps Building Approaches. In: Kutsche, R.-D., Milanovic, N. (eds.) MBSDI 2008, Model Based Software and Integration Systems, CCIS 8, pp. 102–112. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Pepper, S.: Article for the Encyclopedia of Library and Information Sciences (2008),
  4. 4.
    Storey, V.C., Purao, S.: Understanding Relationships: Classifying Verb Phrase Semantics. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 336–347. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Reynolds, J., Kimber, W.E.: Topic Map Authoring With Reusable Ontologies and Automated Knowledge Mining. In: XML 2002 Proceedings by deepX (2002)Google Scholar
  6. 6.
    Librelotto, G.R., Ramalho, J.C., Henriques, P.R.: TM-Builder: An Ontology Builder based on XML Topic Maps. Clei Electronic Journal 7(2), Paper 4 (2004)Google Scholar
  7. 7.
    Pepper, S.: Topic Map Erotica RDF and Topic Maps “in flagrante” (2002),
  8. 8.
    Pepper, S.: Methods for the Automatic Construction of Topic Maps (2002),
  9. 9.
    LeGrand, B., Soto, M.: Topic Maps et navigation intelligente sur le Web Sémantique, AS CNRS Web Sémantique, CNRS Ivry-sur-Seine (October 2002)Google Scholar
  10. 10.
    Folch, H., Habert, H.: Articulating conceptual spaces using the Topic Map standard. In: Proceedings XML 2002, Baltimore, December 2002, pp. 8–13 (2002)Google Scholar
  11. 11.
    Ahmed, K.: TMShare – Topic Map Fragment Exchange in a Peer-To-Peer Application (2003), (2003)
  12. 12.
    Lavik, S., Nordeng, T.W., Meloy, J.R.: BrainBank Learning - building personal topic maps as a strategy for learning. In: XML, Washington (2004)Google Scholar
  13. 13.
    Zaher, L.H., Cahier, J.-P., Zacklad, M.: The Agoræ / Hypertopic approach. In: International Workshop IKHS - Indexing and Knowledge in Human Sciences, SdC, Nantes (2006)Google Scholar
  14. 14.
    Dicheva, D., Dichev, C.: TM4L: Creating and Browsing Educational Topic Maps. British Journal of Educational Technology - BJET 37(3), 391–404 (2006)CrossRefGoogle Scholar
  15. 15.
    Kasler, L., Venczel, Z., Varga, L.Z.: Framework for Semi Automatically Generating Topic Maps. In: TIR 2006, Proceedings of the 3rd international workshop on text-based information retrieval, Riva del Grada, pp. 24–30 (2006)Google Scholar
  16. 16.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: ECAI 2000 workshop on Ontology Learning, Berlin, Germany (2000)Google Scholar
  17. 17.
    Faatz, A., Steinmetz, R.: Ontology enrichment with texts from the WWW. In: The Semantic Web Mining Conference WS 2002 (2002)Google Scholar
  18. 18.
    Parekh, V., Gwo, J.-P., Finin, T.: Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies. In: International Conference of Information and Knowledge Engineering (2004)Google Scholar
  19. 19.
    Velardi, P., Missikof, M., Fabriani, P.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of ACM- FOIS (2001)Google Scholar
  20. 20.
    Xu, F., Kurz, D., Piskorski, J., Schmeier, S.: A domain adaptive approach to automatic acquisition of domain relevant terms and their relations with bootstrapping. In: The 3rd international conference on language resources and evaluation (2002)Google Scholar
  21. 21.
    Neshatian, K., Hejazi, M.R.: Text categorization and classification in terms of multi-attribute concepts for enriching existing ontologies. In: 2nd Workshop on Information Technology and its Disciplines, pp. 43–48 (2004)Google Scholar
  22. 22.
    Bendaoud, R., Rouane Hacene, M., Toussaint, Y., Delecroix, B., Napoli, A.: Construction d’une ontologie à partir d’un corpus de textes avec l’ACF, IC (2007)Google Scholar
  23. 23.
    Roux, C., Proux, D., Rechermann, F., Julliard, L.: An ontology enrichment method for a pragmatic information extraction system gathering data on genetic interactions. In: Proceedings of the ECAI 2000 Workshop on Ontology Learning, OL (2000)Google Scholar
  24. 24.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora, Rapport technique S2K-92-09 (1992)Google Scholar
  25. 25.
    Maedche, A., Staab, S.: Mining ontologies from text. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future directions. Web Semantics: Science, Services and Agents on the World Wide Web 4(2), 124–143 (2006)CrossRefGoogle Scholar
  27. 27.
    Han, E.-H., Karypis, G.: Centroid based document classification: Analysis and experimental results. In: The 4th European Conference of Principles of Data Mining and Knowledge Discovery, pp. 424–431 (2000)Google Scholar
  28. 28.
    Agrawal, R., Srikant, R.: Mining generalized association rules. Future Generation Computer Systems 13(2-3), 161–180 (1997)CrossRefGoogle Scholar
  29. 29.
    Dumas, L., Plante, A., Plante, P.: ALN: Analyseur Linguistique de ALN, vers.1.0. ATO, UQAM (1997)Google Scholar
  30. 30.
    Bourigault, D.: LEXTER, a Natural Language Processing tool for terminology extraction. In: Proceedings of the 7th EURALEX International Congress, Goteborg (1996)Google Scholar
  31. 31.
    Jacquemin, C., Bourigault, D.: Term Extraction and Automatic Indexing. In: Mitkov, R. (ed.) The Oxford Handbook of Computational Linguistics, pp. 599–615. Oxford University Press, Oxford (2003)Google Scholar
  32. 32.
    Frath, P., Oueslati, R., Rousselot, F.: Identification de relations sémantiques par repérage et analyse de cooccurrences de signes linguistiques. In: Charlet, J., Zacklad, M., Kassel, G., Bourigault, D. (eds.) Ingénierie des connaissances, Évolutions récentes et nouveaux défis, Eyrolles, Paris, pp. 291–304 (2000)Google Scholar
  33. 33.
    Rousselot, F., Frath, P., Oueslati, R.: Extracting concepts and relations from Corpora. In: Proceedings of the Workshop on Corpus-oriented Semantic Analysis, European Conference on Artificial Intelligence, ECAI 1996, Budapest (1996)Google Scholar
  34. 34.
    Daille, B.: Identification des adjectifs relationnels en corpus. In: Actes de la Conférence de Traitement Automatique du Langage Naturel (TALN 1999), Cargèse (1999)Google Scholar
  35. 35.
    Bourigault, D., Fabre, C., Frérot, C., Jacques, M.-P., Ozdowska, S.: Syntex, analyseur syntaxique de corpus. In: Actes des 12èmes journées sur le Traitement Automatique des Langues Naturelles, Dourdan, France (2005)Google Scholar
  36. 36.
    Fortuna, B., Grobelnik, M., Mladenic, D.: Semi-automatic data driven ontology construction system. In: Proceedings of the 9th International multiconference Information Society IS 2006, Ljubljana, Slovenia (2006)Google Scholar
  37. 37.
    Cimiano, P., Volker, J.: Text2onto - a framework for ontology learning and data-driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)Google Scholar
  38. 38.
    The GATE platform:
  39. 39.
    Ferruci, D., Lally, A.: UIMA: an architecture approach to unstructured information processing in a corporate research environment. Natural Language Engineering 10(3-4), 327–348 (2004)CrossRefGoogle Scholar
  40. 40.
    Muller, H.-M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology based information retrieval and extraction system for biological literature. PLoS Biology 2(11), 1984–1998 (2004)CrossRefGoogle Scholar
  41. 41.
    Hernandez, N., Mothe, J.: D’un thesaurus vers une ontologie de domaine pour l’exploration d’un corpus. In: Actes de la conférence Veille Stratégique Scientifique & Technologique VSST (2006)Google Scholar
  42. 42.
    Lammari, N., Métais, E.: Building and Maintaining Ontologies: a Set of Algorithms. Data and Knowledge Engineering 48(2), 155–176 (2004)CrossRefGoogle Scholar
  43. 43.
    Salton, G., Buckley, C.: Term-weighing approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  44. 44.
    Calvanese, D., Giacomo, G.D., Lenzerini, M.: A framework for ontology integration. In: Proc. of the First Semantic Web Working Symposium (2001)Google Scholar
  45. 45.
    Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology merging and alignment. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. AAAI Press/MIT Press (2000)Google Scholar
  46. 46.
    Buneman, P., Davidson, S.B., Kosky, A.: Theoretical aspects of schema merging. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  47. 47.
    Canadian Thesaurus of Construction Science and Technology:
  48. 48.
    TM4J website:

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nebrasse Ellouze
    • 1
    • 2
  • Nadira Lammari
    • 1
  • Elisabeth Métais
    • 1
  • Mohamed Ben Ahmed
    • 2
  1. 1.Laboratoire Cedric, CNAMParis cedex 3France
  2. 2.Ecole Nationale des Sciences de l’Informatique, Laboratoire RIADIUniversité de la ManoubaLa Manouba

Personalised recommendations