Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization

  • Xin-She Yang
  • Suash Deb
Part of the Studies in Computational Intelligence book series (SCI, volume 284)

Abstract

Most global optimization problems are nonlinear and thus difficult to solve, and they become even more challenging when uncertainties are present in objective functions and constraints. This paper provides a new two-stage hybrid search method, called Eagle Strategy, for stochastic optimization. This strategy intends to combine the random search using Lévy walk with the firefly algorithm in an iterative manner. Numerical studies and results suggest that the proposed Eagle Strategy is very efficient for stochastic optimization. Finally practical implications and potential topics for further research will be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Dordrecht (1987)Google Scholar
  2. 2.
    Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008)CrossRefGoogle Scholar
  3. 3.
    Bental, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)Google Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  5. 5.
    Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecol. 35, 129–138 (2007)CrossRefGoogle Scholar
  6. 6.
    Deb, K.: Optimisation for Engineering Design. Prentice-Hall, New Delhi (1995)Google Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading (1989)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press, London (2001)Google Scholar
  10. 10.
    Marti, K.: Stochastic Optimization Methods. Springer, Heidelberg (2005)MATHGoogle Scholar
  11. 11.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)MATHGoogle Scholar
  12. 12.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pavlyukevich, I.: Cooling down Lévy flights. J. Phys. A:Math. Theor. 40, 12299–12313 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)CrossRefGoogle Scholar
  15. 15.
    Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for statistical performance comparison of evolutionary computation algorithms. Information Sciences: an Int. Journal 178, 2870–2879 (2008)Google Scholar
  16. 16.
    Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.): Lévy Flights and Related Topics in Phyics. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Shlesinger, M.F.: Search research. Nature 443, 281–282 (2006)CrossRefGoogle Scholar
  18. 18.
    Urfalioglu, O., Cetin, A.E., Kuruoglu, E.E.: Levy walk evolution for global optimization. In: Proc. of 10th Genetic and Evolutionary Computation Conference, pp. 537–538 (2008)Google Scholar
  19. 19.
    Wallace, S.W., Ziemba, W.T.: Applications of Stochastic Programming. SIAM Mathematical Series on Optimization (2005)Google Scholar
  20. 20.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic 2009), pp. 210–214. IEEE Pulications, India (2009)CrossRefGoogle Scholar
  22. 22.
    Yang, Z.Y., Tang, K., Yao, X.: Large Scale Evolutionary Optimization Using Cooperative Coevolution. Information Sciences 178, 2985–2999 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xin-She Yang
    • 1
  • Suash Deb
    • 2
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Computer Science & EngineeringC.V. Raman College of EngineeringBhubaneswarIndia

Personalised recommendations