Discovering Beneficial Cooperative Structures for the Automated Construction of Heuristics

  • Germán Terrazas
  • Dario Landa-Silva
  • Natalio Krasnogor
Part of the Studies in Computational Intelligence book series (SCI, volume 284)


The current research trends on hyper-heuristics design have sprung up in two different flavours: heuristics that choose heuristics and heuristics that generate heuristics. In the latter, the goal is to develop a problem-domain independent strategy to automatically generate a good performing heuristic for specific problems, that is, the input to the algorithm are problems and the output are problem-tailored heuristics. This can be done, for example, by automatically selecting and combining different low-level heuristics into a problem specific and effective strategy. Thus, hyper-heuristics raise the level of generality on automated problem solving by attempting to select and/or generate tailored heuristics for the problem in hand. Some approaches like genetic programming have been proposed for this. In this paper, we report on an alternative methodology that sheds light on simple methodologies that efficiently cooperate by means of local interactions. These entities are seen as building blocks, the combination of which is employed for the automated manufacture of good performing heuristic search strategies.We present proof-of-concept results of applying this methodology to instances of the well-known symmetric TSP. The goal here is to demonstrate feasibility rather than compete with state of the art TSP solvers. This TSP is chosen only because it is an easy to state and well known problem.


Travel Salesman Problem Travel Salesman Problem High Quality Solution Automate Manufacture Optimal Tour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babin, G., Deneault, S., Laporte, G.: Improvements to the or-opt heuristic for the symmetric traveling salesman problem. Journal of the Operational Research Society (58), 402–407 (2007)Google Scholar
  2. 2.
    Bader-El-Den, M., Poli, R.: A gp-based hyper-heuristic framework for evolving 3-sat heuristics. In: Genetic and Evolutionary Computation Conference, p. 1749. ACM, New York (2007)Google Scholar
  3. 3.
    Brest, J., Zerovnik, J.: A heuristic for the asymmetric traveling salesman problem. In: 6th Metaheuristics International Conference, pp. 145–150 (2005)Google Scholar
  4. 4.
    Burke, E., Hyde, M., Kendall, G.: Evolving bin packing heuristics with genetic. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Burke, E., Hyde, M., Kendall, G., Woodward, J.: Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In: Genetic and Evolutionary Computation Conference, pp. 1559–1565. ACM, New York (2007)Google Scholar
  6. 6.
    Burke, E.K., Hart, E., Kendall, G.N., Newall, J., Ross, P., Schulenburg, S.: Handbook of Meta-Heuristics. In: chap Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  7. 7.
    Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Adaptive and Multilevel Metaheuristics, vol. 136, pp. 3–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: IEEE Congress on Evolutionary Computation, pp. 1214–1221. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  9. 9.
    Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: IEEE Congress on Evolutionary Computation, pp. 1185–1190. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  10. 10.
    Krasnogor, N., Smith, J.: Memetic algorithms: The polynomial local search complexity theory perspective. Journal of Mathematical Modelling and Algorithms 7, 3–24 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Oltean, M., Dumitrescu, D.: Evolving tsp heuristics using multi expression programming. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 670–673. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Özcan, E., Bilgin, B., Korkmaz, E.: Hill climbers and mutational heuristics in hyperheuristics. In: 9th International Conference on PPSN, pp. 202–211 (2006)Google Scholar
  13. 13.
    Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12(1), 3–23 (2008)Google Scholar
  14. 14.
    Pillay, N., Banzhaf, W.: A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem. European Journal of Operational Research 197(2), 482–491 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Reinelt, G.: The traveling salesman: Computational solutions for TSP applications. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support, pp. 529–556. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Ross, P., Schulenburg, S., Marín-Blázquez, J., Hart, E.: Hyper-heuristics: Learning to combine simple heuristics in bin-packing problems. In: Genetic and Evolutionary Computation Conference, pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  18. 18.
    Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Publishing (1997)Google Scholar
  19. 19.
    Tao, G., Michalewicz, Z.: Inver-over operator for the tsp. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Germán Terrazas
    • 1
  • Dario Landa-Silva
    • 1
  • Natalio Krasnogor
    • 1
  1. 1.ASAP Group, School of Computer ScienceUniversity of NottinghamUK

Personalised recommendations