A Distributed Service Oriented Framework for Metaheuristics Using a Public Standard

  • P. García-Sánchez
  • J. González
  • P. A. Castillo
  • J. J. Merelo
  • A. M. Mora
  • J. L. J. Laredo
  • M. G. Arenas
Part of the Studies in Computational Intelligence book series (SCI, volume 284)


This work presents a Java-based environment that facilitates the development of distributed algorithms using the OSGi standard. OSGi is a plug-in oriented development platform that enables the installation, support and deployment of components that expose and use services dynamically. Using OSGi in a large research area, like the Heuristic Algorithms, facilitate the creation or modification of algorithms, operators or problems using its features: event administration, easy service implementation, transparent service distribution and lifecycle management. In this work, a framework based in OSGi is presented, and as an example two heuristics have been developed: a Tabu Search and a Distributed Genetic Algorithm.


Genetic Algorithm Vehicle Route Problem Heuristic Optimization IEEE Communication Magazine Open Service Gateway Initiative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Almeida, F., Blesa, M., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C., Luque, G., Petit, J., Rodríguez, C., Rojas, A., Xhafa, F.: Efficient parallel LAN/WAN algorithms for optimization, the MALLBA project. Parallel Computing 32(5-6), 415–440 (2006)CrossRefGoogle Scholar
  2. 2.
    Alliance, O.: OSGi alliance (2004),
  3. 3.
    Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    BranchAndCutorg. Vehicle routing data sets (2003),
  5. 5.
    Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  6. 6.
    Cahon, S., Melab, N., Talbi, E.: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  7. 7.
    Escoffier, C., Donsez, D., Hall, R.S.: Developing an OSGi-like Service Platform for .NET. In: 3rd IEEE Consumer Communications and Networking Conference, vol. 1-3, pp. 213–217 (2006)Google Scholar
  8. 8.
    Esparcia-Alcázar, A.I., Cardós, M., Merelo, J.J., Martínez-García, A., García-Sánchez, P., Alfaro-Cid, E., Sharman, K.: EVITA: An integral evolutionary methodology for the inventory and transportation problem. Studies in Computational Intelligence 161, 151–172 (2009)CrossRefGoogle Scholar
  9. 9.
    Foster, I.: The Grid: A new infrastructure for 21st Century Science. Phisics Today 55, 42–47 (2002)CrossRefGoogle Scholar
  10. 10.
    Gaspero, L., Schaerf, A.: Easylocal++: an object-oriented framework for the flexible desgin of local search algorithms and metaheuristics. In: Proceedings of 4th Metaheuristics International Conference (MIC 2001), pp. 287–292 (2001)Google Scholar
  11. 11.
    González, J.R., Pelta, D.A., Masegosa, A.D.: A framework for developing optimization-based decision support systems. Expert Systems with Applications 36(3, Part 1), 4581–4588 (2009)CrossRefGoogle Scholar
  12. 12.
    Kriens, P.: Research challenges for OSGi (2008),
  13. 13.
    León, C., Miranda, G., Segura, C.: Metco: A parallel plugin-based framework for multi-objective optimization. International Journal on Artificial Intelligence Tools 18(4), 569–588 (2009)CrossRefGoogle Scholar
  14. 14.
    Luke, S., et al.: ECJ: A Java-based Evolutionary Computation and Genetic Programming Research System (2009),
  15. 15.
    Marples, D., Kriens, P.: The Open Services Gateway Initiative: An introductory overview. IEEE Communications Magazine 39(12), 110–114 (2001)CrossRefGoogle Scholar
  16. 16.
    Miller, B.A., Nixon, T., Tai, C., Wood, M.D.: Home networking with universal plug and play. IEEE Communications Magazine 39(12), 104–109 (2001)CrossRefGoogle Scholar
  17. 17.
    OSGi Alliance. Declarative services specification, pp. 281–314 (2007),
  18. 18.
    Papazoglou, M.P., Van Den Heuvel, W.: Service oriented architectures: Approaches, technologies and research issues. VLDB Journal 16(3), 389–415 (2007)CrossRefGoogle Scholar
  19. 19.
    Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-osgi: Distributed applications through software modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Wagner, S., Affenzeller, M.: Heuristiclab grid - a flexible and extensible environment for parallel heuristic optimization. In: Proceedings of the International Conference on Systems Science, vol. 1, pp. 289–296 (2004)Google Scholar
  21. 21.
    Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Beham, A., Braune, R., Affenzeller, M.: Benefits of plugin-based heuristic optimization software systems. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 747–754. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Waldo, J.: The Jini architecture for network-centric computing. Communications of the ACM 42(7), 76–82 (1999)CrossRefGoogle Scholar
  23. 23.
    Wall, B.: A genetic algorithm for resource-constrained scheduling, Ph.D. thesis. MIT, Cambridge (1996),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. García-Sánchez
    • 1
  • J. González
    • 1
  • P. A. Castillo
    • 1
  • J. J. Merelo
    • 1
  • A. M. Mora
    • 1
  • J. L. J. Laredo
    • 1
  • M. G. Arenas
    • 1
  1. 1.Dept. of Computer Architecture and Computer Technology 

Personalised recommendations