Advertisement

Block Preconditioners for the Incompressible Stokes Problem

  • M. ur Rehman
  • C. Vuik
  • G. Segal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

This paper discusses the solution of the Stokes problem using block preconditioned iterative methods. Block preconditioners are based on the block factorization of the discretized problem. We focus on two specific types: SIMPLE-type preconditioners and the LSC preconditioner. Both methods use scaling to improve their performance. We test convergence of GCR in combination with these preconditioners both for a constant and a non-constant viscosity Stokes problem.

Keywords

Stokes Problem Variable Viscosity Saddle Point Problem Drive Cavity Velocity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Elman, H.C., Silvester, D., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with applications in incompressible fluids dynamics. Oxford University Press, Oxford (2005)Google Scholar
  3. 3.
    Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numerical Analysis 12(4), 617–629 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eisenstat, C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. Modern Software Tools in Scientific Computing, 163–202 (1997)Google Scholar
  7. 7.
    van der Vorst, H.A., Vuik, C.: GMRESR: a family of nested GMRES methods. Num. Lin. Alg. Appl. 1, 369–386 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Vuik, C., Saghir, A., Boerstoel, G.P.: The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces. Int. J. Numer. Meth. Fluids 33, 1027–1040 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    ur Rehman, M., Vuik, C., Segal, G.: SIMPLE-Type preconditioners for the Oseen problem. Int. J. Numer. Meth. Fluids. Published Online (2008) Google Scholar
  10. 10.
    Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block Preconditioners Based on Approximate Commutators. SIAM J. Sci. Comput. 27(5), 1651–1666 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Physics of the Earth and Planetary Interiors 171, 33–47 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. ur Rehman
    • 1
  • C. Vuik
    • 1
  • G. Segal
    • 1
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft Institute of Applied Mathematics, Delft University of TechnologyCD DelftThe Netherlands

Personalised recommendations