Advertisement

The Bpmpd Interior Point Solver for Convex Quadratically Constrained Quadratic Programming Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

The paper describes the convex quadratically constrained quadratic solver Bpmpd which is based on the infeasible–primal–dual algorithm. The discussion includes subjects related to the implemented algorithm and numerical algebra employed. We outline the implementation with emhasis to sparsity and stability issues. Computational results are given on a demonstrative set of convex quadratically constrained quadratic problems.

Keywords

Interior Point Interior Point Method Cholesky Factorization Cache Memory Quadratic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, E., Gondzio, J., Mészáros, C., Xu, X.: Implementation of interior point methods for large scale linear programs. In: Terlaky, T. (ed.) Interior Point Methods of Mathematical Programming, pp. 189–252. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  2. 2.
    George, A., Liu, J.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)zbMATHGoogle Scholar
  3. 3.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kojima, M., Megiddo, N., Mizuno, S.: Theoretical convergence of large-step primal-dual interor-point algorithms for linear programming. Mathematical Programming 59(1) (1993)Google Scholar
  5. 5.
    Lustig, I., Marsten, R., Shanno, D.: Computational experience with a primal-dual interior point method for linear programming. Linear Algebra Appl. 20, 191–222 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mészáros, C.: The BPMPD interior-point solver for convex quadratic problems. Optimization Methods and Software 11-12, 431–449 (1999)CrossRefGoogle Scholar
  7. 7.
    Mészáros, C.: On the performance of the Cholesky factorization in interior point methods on Pentium 4 processors. CEJOR 13(4), 289–298 (2005)zbMATHGoogle Scholar
  8. 8.
    Mészáros, C.: On numerical issues of interior point methods. SIAM J. on Matrix Analysis 30(1), 223–235 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mészáros, C.: On the Cholesky factorization in interior point methods. Computers & Mathematics with Applications 50, 1157–1166 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mészáros, C.: Fast Cholesky factorization for interior point methods of linear programming. Computers & Mathematics with Applications 31(4/5), 49–54 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mittelmann, H., Spellucci, P.: Decision tree for optimization software. World Wide Web (1998), http://plato.la.asu.edu/guide.html
  12. 12.
    Rothberg, E., Gupta, A.: Efficient Sparse Matrix Factorization on High-Performance Workstations-Exploiting the Memory Hierarchy. ACM Trans. Mathematical Software 17(3), 313–334 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Vanderbei, R.: Symmetric quasi-definite matrices. SIAM J. on Optimization 5(1), 100–113 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yannakakis, M.: Computing the minimum fill–in is NP–complete. SIAM J. Algebraic Discrete Methods 2, 77–79 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Operations Research and Decision SystemsHungarian Academy of Sciences 

Personalised recommendations