Additive Operator Decomposition and Optimization–Based Reconnection with Applications

  • Pavel Bochev
  • Denis Ridzal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

We develop an optimization-based approach for additive decomposition and reconnection of algebraic problems arising from discretizations of partial differential equations (PDEs). Application to a scalar convection–diffusion PDE illustrates the new approach. In particular, we derive a robust iterative solver for convection–dominated problems using standard multilevel solvers for the Poisson equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, R.E., Wan, J.W.L., Qu, Z.: Kernel preserving multigrid methods for convection-diffusion equations. SIAM J. Matrix Anal. Appl. 27(4), 1150–1171 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bochev, P., Ridzal, D.: An optimization-based approach for the design of robust solution algorithms. SIAM J. Numer. Anal. (submitted)Google Scholar
  3. 3.
    Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (αsa) multigrid. SIAM Review 47(2), 317–346 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Du, Q., Gunzburger, M.: A gradient method approach to optimization-based multidisciplinary simulations and nonoverlapping domain decomposition algorithms. SIAM J. Numer. Anal. 37, 1513–1541 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  6. 6.
    Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 Smoothed Aggregation User’s Guide. Technical Report SAND2006-2649, Sandia National Laboratories, Albuquerque, NM (2006)Google Scholar
  7. 7.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  8. 8.
    Gunzburger, M., Lee, H.K.: An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37, 1455–1480 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Henson, V.E., Meier Yang, U.: Boomeramg: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hughes, T.J.R., Brooks, A.: A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure. In: Rao, R.H.G., et al. (eds.) Finite Elements in Fluids, vol. 4, pp. 47–65. J. Wiley & Sons, New York (1982)Google Scholar
  11. 11.
    Lions, J.L.: Virtual and effective control for distributed systems and decomposition of everything. Journal d’Analyse Mathématique 80, 257–297 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 1st edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  13. 13.
    Notay, Y.: Aggregation-based algebraic multilevel preconditioning. SIAM J. Matrix Anal. Appl. 27(4), 998–1018 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sala, M., Tuminaro, R.S.: A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comp. 31(1), 143–166 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Stüben, K.: A review of algebraic multigrid. J. Comp. Appl. Math. 128(1-2), 281–309 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer, New York (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pavel Bochev
    • 1
  • Denis Ridzal
    • 2
  1. 1.Applied Mathematics and Applications 
  2. 2.Sandia National LaboratoriesOptimization and Uncertainty QuantificationAlbuquerqueUSA

Personalised recommendations