Numerical Simulations of Reaction-Diffusion Systems Arising in Chemistry Using Exponential Integrators

  • Răzvan Ştefănescu
  • Gabriel Dimitriu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)


We perform a comparative numerical study of two reaction-diffusion models arising in chemistry by using exponential integrators. Numerical simulations of the reaction kinetics associated with these models, including both the local and global errors as a function of time step and error as a function of computational time are shown.


Numerical Scheme Malonic Acid Global Error Order Scheme Chlorine Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashkenazi, M., Othmer, H.G.: Spatial Patterns in Coupled Biochemical Oscillators. J. Math. Biol. 5, 305–350 (1978)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Berland, H., Skaflestad, B.: Solving the nonlinear Schrödinger equation using exponential integrators. Modeling, Identification and Control 27(4), 201–217 (2006)CrossRefGoogle Scholar
  3. 3.
    Berland, H., Skaflestad, B., Wright, W.: EXPINT — A Matlab package for exponential integrators. Numerics 4 (2005)Google Scholar
  4. 4.
    Butcher, J.C.: Numerical methods for ordinary differential equations. John Wiley & Sons, Chichester (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Celledoni, E., Marthinsen, A., Qwren, B.: Commutator-free Lie group methods. FGCS 19(3), 341–352 (2003)Google Scholar
  6. 6.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176(2), 430–455 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kepper, P., De Castets, V., Dulos, E., Boissonade, J.: Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49, 161–169 (1991)CrossRefGoogle Scholar
  8. 8.
    Krogstad, S.: Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics 203(1), 72–88 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lawson, D.J.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650–652 (1991)CrossRefGoogle Scholar
  11. 11.
    Minchev, B., Wright, W.M.: A review of exponential integrators for semilinear problems. Technical Report 2, The Norwegian University of Science and Technology (2005)Google Scholar
  12. 12.
    Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Applied Numerical Mathematics 29, 115–127 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nørsett, S.P.: An A-stable modification of the Adams-Bashforth methods. In: Conf. on Numerical solution of Differential Equations, Dundee, pp. 214–219. Springer, Berlin (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Răzvan Ştefănescu
    • 1
  • Gabriel Dimitriu
    • 1
  1. 1.“Gr. T. Popa” University of Medicine and PharmacyDepartment of Mathematics and InformaticsIaşiRomania

Personalised recommendations