Advertisement

Analysis of the Monte Carlo Image Creation by Uniform Separation

  • A. A. Penzov
  • I. T. Dimov
  • L. Szirmay-Kalos
  • V. N. Koylazov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

This paper considers the uniform separation technique of integration domain for Monte Carlo image creation. Uniform Separation technique is based on symmetrical separation into small equal size sub-domains to solve the rendering equation which describes the photons propagation in a virtual scene. It tries to reduce the variance at solving the rendering equation pixel by pixel in the image pixels matrix.

Our goal is to analyze and study the Monte Carlo estimators by Uniform Separation for numerical treatment of the rendering equation, as well as the influence over the total process of image creation. We develop our consideration on the base of mathematical theory for Monte Carlo estimations and the experience of image creation. New results for the symmetric separation of integration domain are obtained and presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvo, J.: Stratifed sampling of spherical triangles. In: Proceedings of SIGGRAPH 1995, ACM SIGGRAPH, pp. 437–438 (1995)Google Scholar
  2. 2.
    Dimov, I.T.: Optimal Monte Carlo Algorithms. In: ISMC 2006, Proceedings of IEEE — John Vincent Atanasoff, pp. 125–131 (2006)Google Scholar
  3. 3.
    Dimov, I.T.: Monte-Carlo Methods for Applied Scientists. World Scientific Publishing, Singapore (2008)zbMATHGoogle Scholar
  4. 4.
    Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 148–155. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Approach for Integration of the Rendering Equation. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 140–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Kajiya, J.T.: The Rendering Equation. In: Proceedings of SIGGRAPH 1986 (1986); ACM SIGGRAPH Computer Graphics 20(4), 143–150 (1986)Google Scholar
  7. 7.
    Mitchell, D.P.: Consequences of stratified sampling in computer graphics. In: Proceedings of SIGGRAPH 1996, ACM SIGGRAPH, pp. 277–280 (1996)Google Scholar
  8. 8.
    Penzov, A.A., Dimov, I.T., Koylazov, V.N.: A New Solution of the Rendering Equation with Stratified Monte Carlo Approach. In: ICNAAM 2008, AIP Conference Proceedings, vol. 1048, pp. 432–435 (2008)Google Scholar
  9. 9.
    Penzov, A.A., Stoilova, S.S., Dimov, I.T., Mitev, N.M.: Uniform Separation for Parallel Monte Carlo Image Creation. In: Fourth Hungarian Conference on Computer Graphics and Geometry, SZTAKI, Budapest, Hungary, pp. 117–124 (2007)Google Scholar
  10. 10.
    Sobol, I.M.: Monte Carlo Numerical Methods, Nauka, Moscow (1975) (in Russian)Google Scholar
  11. 11.
    Szirmay-Kalos, L., Purgathofer, W.: Analisis of the Quasi-Monte Carlo Integration of the Rendering Equation. In: Proccedings of WSCG 1999, pp. 281–288. University of West Bohemia, Plzen (1999)Google Scholar
  12. 12.
    Szirmay-Kalos, L.: Monte-Carlo Methods in Global Illumination — Photo-realistic Rendering with Randomization. VDM Verlag Dr. Mueller e.K., Saarbrücken (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. A. Penzov
    • 1
  • I. T. Dimov
    • 1
    • 2
  • L. Szirmay-Kalos
    • 3
  • V. N. Koylazov
    • 4
  1. 1.Institute for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria
  2. 2.ACET CentreUniversity of ReadingReadingUK
  3. 3.Budapest University of Technology and EconomicsBudapestHungary
  4. 4.Chaos SoftwareSofiaBulgaria

Personalised recommendations