Advertisement

Particle Model of the Scattering-Induced Wigner Function Correction

  • M. Nedjalkov
  • P. Schwaha
  • O. Baumgartner
  • S. Selberherr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

The ability of accounting for quantum-coherent and phase-breaking processes is a major feature of the Wigner transport formalism. However, the coherent case is only obtained at significant numerical costs. Therefore, a scheme which uses coherent data obtained with a Green’s function formalism has been developed. This scheme calculates the necessary corrections due to scattering using the Wigner approach and the associated Boltzmann collision models. The resulting evolution problem is not only theoretically derived, but simulation results are presented as well.

Keywords

Monte Carlo Wigner Function Curly Bracket Domain Indicator Coherent Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, O., Schwaha, P., Karner, M., Nedjalkov, M., Selberherr, S.: Coupling of non-equilibrium Green’s function and Wigner function approaches. In: Proc. Simulation of Semiconductor Processes and Devices, Hakone, Japan, pp. 931–934 (2008) ISBN: 978-1-4244-1753-7Google Scholar
  2. 2.
    Goodnick, S.M., Vasileska, D.: Computational electronics. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Kramer, E.J., Mahajan, S. (eds.) Encyclopedia of Materials: Science and Technology, vol. 2, pp. 1456–1471. Elsevier, New York (2001)Google Scholar
  3. 3.
    Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two- and three- dimensional nanoscale transistors: Coupled mode effects in the non-equilibrium Green’s function formalism. Journal of Applied Physics 100, 043713–1–043713–12 (2006)Google Scholar
  4. 4.
    Querlioz, D., Saint-Martin, J., Do, V., Bournel, A., Dolfus, P.: Fully quantum self-consistent study of ultimate DG-MOSFETs including realistic scattering using Wigner Monte Carlo approach. In: Intl. Electron Devices Meeting, pp. 1–4 (2006)Google Scholar
  5. 5.
    Svizhenko, A., Antram, M.P.: Role of scattering in nanotransistors. IEEE Trans. on Electron Devices 50, 1459–1466 (2003)CrossRefGoogle Scholar
  6. 6.
    Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S.: Simulating quantum transport in nanoscale transistors: real versus mode space approach. Journal of Applied Physics 92, 3730–3739 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Nedjalkov
    • 1
    • 2
  • P. Schwaha
    • 1
  • O. Baumgartner
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria
  2. 2.Institute for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations