Advertisement

An Efficiency-Based Adaptive Refinement Scheme Applied to Incompressible, Resistive Magnetohydrodynamics

  • J. Adler
  • T. Manteuffel
  • S. McCormick
  • J. Nolting
  • J. Ruge
  • L. Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5910)

Abstract

This paper describes the use of an efficiency-based adaptive mesh refinement scheme, known as ACE, on a 2D reduced model of the incompressible, resistive magnetohydrodynamic (MHD) equations. A first-order system least squares (FOSLS) finite element formulation and algebraic multigrid (AMG) are used in the context of nested iteration. The FOSLS a posteriori error estimates allow the nested iteration and ACE algorithms to yield the best accuracy-per-computational-cost. The ACE scheme chooses which elements to add when interpolating to finer grids so that the best error reduction with the least amount of cost is obtained, when solving on the refined grid. We show that these methods, applied to the simulation of a tokamak fusion reactor instability, yield approximations to solutions within discretization accuracy using less than the equivalent amount of work needed to perform 10 residual calculations on the finest uniform grid.

Keywords

Magnetohydrodynamics adaptive mesh refinement algebraic multigrid nested iteration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, Z., Lazarov, R., Manteuffel, T., McCormick, S.: First-Order System Least Squares for Second-Order Partial Differential Equations. SIAM J. Numer. Anal. 31, 1785–1799 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cai, Z., Manteuffel, T., McCormick, S.: First-Order System Least Squares for Second-Order Partial Differential Equations. II. SIAM J. Numer. Anal. 34, 425–454 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brandt, A., McCormick, S.F., Ruge, J.: Algebraic Multigrid (AMG) for automatic multigrid solutions with application to geodetic computations. Report, Inst. for Computational Studies, Fort Collins, CO (1982)Google Scholar
  4. 4.
    Brandt, A., McCormick, S.F., Ruge, J.: Algebraic Multigrid (AMG) for sparse matrix equations. Cambridge University Press, Cambridge (1984)Google Scholar
  5. 5.
    Brandt, A.: Algebraic Multigrid Theory: The Symmetric Case. Appl. Math. Comput. 19(1-4), 23–56 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)zbMATHGoogle Scholar
  7. 7.
    Oosterlee, C., Schuller, A., Trottenberg, U.: Multigrid. Academic Press, London (2000)Google Scholar
  8. 8.
    Ruge, J., Stüben, K.: Algebraic Multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods (1986)Google Scholar
  9. 9.
    Adler, J., Manteuffel, T., McCormick, S.F., Ruge, J.: First-order system least squares for incompressible resistive Magnetohydrodynamics. SIAM J. Sci. Comp. (to appear, 2009)Google Scholar
  10. 10.
    Adler, J., Manteuffel, T., McCormick, S., Ruge, J., Sanders, G.: Nested Iteration and First-Order System Least Squares for Incompressible, Resistive Magnetohydrodynamics. SIAM J. on Sci. Comp. (SISC) (submitted) (2009)Google Scholar
  11. 11.
    Adler, J.: Nested Iteration and First Order Systems Least Squares on Incompressible Resistive Magnetohydrodynamics. PhD thesis, University of Colorado at Boulder (2009)Google Scholar
  12. 12.
    Berndt, M., Manteuffel, T., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS). E.T.N.A. 6, 35–43 (1998)MathSciNetGoogle Scholar
  13. 13.
    DeSterck, H., Manteuffel, T., McCormick, S., Nolting, J., Ruge, J., Tang, L.: Efficiency-based h- and hp-refinement strategies for finite element methods. J. Num. Lin. Alg. Appl. 15, 249–270 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nolting, J.: Efficiency-based Local Adaptive Refinement for FOSLS Finite Elements. PhD thesis, University of Colorado at Boulder (2008)Google Scholar
  15. 15.
    Nicholson, D.R.: Introduction to Plasma Theory. John Wiley and Sons, New York (1983)Google Scholar
  16. 16.
    Ullrich, P.: Dynamics and Properties of the Magnetohydrodynamics Equations (unpublished) (2005)Google Scholar
  17. 17.
    Bochev, P., Cai, Z., Manteuffel, T., McCormick, S.: Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier-Stokes Equations: Part I. SIAM J. Numer. Anal. 35, 990–1009 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bochev, P., Cai, Z., Manteuffel, T., McCormick, S.: Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier-Stokes Equations: Part II. SIAM J. Numer. Anal. 36, 1125–1144 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Heys, J., Lee, E., Manteuffel, T., McCormick, S.: An Alternative Least-Squares Formulation of the Navier-Stokes Equations with Improved Mass Conservation. J. Comp. Phys. 226(1), 994–1006 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Codd, A.: Elasticity-Fluid Coupled Systems and Elliptic Grid Generation (EGG) Based on First-Order System Least Squares (FOSLS). PhD thesis, University of Colorado at Boulder (2001)Google Scholar
  21. 21.
    Codd, A., Manteuffel, T., McCormick, S.: Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations. SIAM J. Numer. Anal. 41, 2197–2209 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chacon, L., Knoll, D.A., Finn, J.M.: An Implicit, Nonlinear Reduced Resistive MHD Solver. J. of Computational Physics 178, 15–36 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Chacon, L., Knoll, D.A., Finn, J.M.: Nonlinear Study of the Curvature-Driven Parallel Velocity Shear-Tearing Instability. Physics of Plasmas 9, 1164–1176 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Philip, B., Chacon, L., Pernice, M.: Implicit Adaptive Mesh Refinement for 2D Reduced Resistive Magnetohydrodynamics. J. Comp. Phys. 227(20), 8855–8874 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Strauss, H.: Nonlinear, Three-Dimensional Magnetohydrodynamics of Noncircular Tokamaks. Physics of Fluids 19, 134–140 (1976)CrossRefGoogle Scholar
  26. 26.
    Bateman, G.: MHD Instabilities. MIT Press, Cambridge (1978)Google Scholar
  27. 27.
    Knoll, D.A., Chacon, L.: Coalescence of Magnetic Islands, Sloshing, and the Pressure Problem. Physics of Plasmas 13(1) (2006)Google Scholar
  28. 28.
    Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (αsa) multigrid. SIAM Review (SIGEST) 47, 317–346 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive algebraic multigrid. SIAM J. on Sci. Comp. (SISC) 27, 1261–1286 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    MacLachlan, S.: Improving Robustness in Multiscale Methods. PhD thesis, University of Colorado at Boulder (2004)Google Scholar
  31. 31.
    Ruge, J.: Fospack users manual, version 1.0. (unpublished) (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. Adler
    • 1
  • T. Manteuffel
    • 1
  • S. McCormick
    • 1
  • J. Nolting
    • 1
  • J. Ruge
    • 1
  • L. Tang
    • 1
  1. 1.Department of Applied MathematicsUniversity of Colorado at BoulderBoulder

Personalised recommendations